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Preface

This third revision has been designed, as have the first two editions, for use in a first
course in microwave devices and circuits at the senior or beginning graduate level in
electrical engineering. The objectives of this book are to present the basic principles,
characteristics, and applications of commonly used microwave devices and to ex-
plain the techniques for designing microwave circuits. It is assumed that readers of
this text have had previous courses in electromagnetics and solid-state electronics.
Because this book is self-contained to a large extent, it also serves as a convenient
reference for electronics engineers working in the microwave field.

The format of this edition remains the same, but there are additions and expan-
sions as well as some corrections and deletions. The problems section has been en-
larged and includes new and very practical problems. The book is reorganized into
twelve chapters.

Chapter 1 discusses the interactions between electrons and fields.

Chapter 2 deals with plane-wave propagation in different media.

Chapter 3 treats transmission lines.

Chapter 4 analyzes microwave waveguides and components.

Chapter 5 describes microwave transistors and tunnel diodes, and includes het-
erojunction bipolar transistors (HBTs).

Chapter 6 treats microwave field-effect transistors such as JFETs, MESFETs,
HEMTs, MOSFETs and the NMOS, CMOS, and the charged-coupled devices
(CCDs).

Chapter 7 discusses transferred electron devices (TEDs), including the Gunn,
LSA, InP, and CdTe diodes.

Chapter 8 describes avalanche transit-time devices such as the IMPATT,
TRAPATT, and BARITT diodes and the parametric devices.

Xv



xvi Preface

Chapter 9 deals with microwave linear-beam tubes including klystrons, reflex
klystron, and traveling-wave tubes (TWTs).

Chapter 10 studies microwave crossed-field tubes such as magnetrons, for-
ward-wave crossed-field amplifiers, and the backward-wave crossed-field am-
plifiers—Amplitron and Carcinotron.

Chapter 11 explains strip lines including microstrip, parallel, coplanar, and
shielded strip lines.

Chapter 12 analyzes monolithic microwave integrated circuits (MMICs) in-
cluding MMIC growth, MOSFET fabrication, thin-film formation, and hybrid inte-
grated-circuit fabrication.

The arrangement of topics is flexible; an instructor may conveniently select or
order the several topics to suit either a one-semester or a one-quarter course. Numer-
ous problems for each chapter establish the reader’s further understanding of the
subjects discussed. Instructors who have adopted the book for their courses may ob-
tain a solutions manual from the publisher.

The author is grateful to the several anonymous reviewers; their many valuable
comments and constructive suggestions helped to improve this edition. The author
would also like to acknowledge his appreciation to the many instructors and students
who used the first two editions and who have offered comments and suggestions. All
of this help was vital in improving this revision, and this continuing group effort is
sincerely invited. Finally, I wish to express my deep appreciation to my wife, Lucia
Hsiao Chuang Lee, and our children: Grace in bioengineering, Kathy in electrical
engineering, Gary in electronics engineering, and Jeannie in teachers education, for
their valuable collective contributions. Therefore, this revision is dedicated to them.

Samuel Y. Liao



Chapter O

Introduction

The central theme of this book concerns the basic principles and applications of mi-
crowave devices and circuits. Microwave techniques have been increasingly adopted
in such diverse applications as radio astronomy, long-distance communications,
space navigation, radar systems, medical equipment, and missile electronic systems.
As a result of the accelerating rate of growth of microwave technology in research
and industry, students who are preparing themselves for, and electronics engineers
who are working in, the microwave area are faced with the need to understand the
theoretical and experimental design and analysis of microwave devices and circuits.

0-1 MICROWAVE FREQUENCIES

The term microwave frequencies is generally used for those wavelengths measured in
centimeters, roughly from 30 cm to 1 mm (1 to 300 GHz). However, microwave re-
ally indicates the wavelengths in the micron ranges. This means microwave frequen-
cies are up to infrared and visible-light regions. In this revision, microwave frequen-
cies refer to those from 1 GHz up to 10° GHz. The microwave band designation that
derived from World War Il radar security considerations has never been officially
sanctioned by any industrial, professional, or government organization. In August
1969 the United States Department of Defense, Office of Joint Chiefs of Staff, by
message to all services, directed the use of a new frequency band breakdown as
shown in Table 0-1. On May 24, 1970, the Department of Defense adopted another
band designation for microwave frequencies as listed in Table 0-2. The Institute of
Electrical and Electronics Engineers (IEEE) recommended new microwave band
designations as shown in Table 0-3 for comparison.

1



2 Introduction ~ Chap. 0

TABLE 0-1 U.S. MILITARY MICROWAVE BANDS

Designation Frequency range in gigahertz
P band 0.225- 0.390
L band 0.390- 1.550
S band 1.550- 3.900
C band 3.900- 6.200
X band 6.200- 10.900
K band 10.900- 36.000
Q band 36.000— 46.000
V band 46.000- 56.000
W band 56.000-100.000

TABLE 0-2 U.S. NEW MILITARY MICROWAVE BANDS

Designation Frequency range in gigahertz Designation Frequency range in gigahertz

A band 0.100-0.250 H band 6.000- 8.000
B band 0.250-0.500 I band 8.000- 10.000
C band 0.500-1.000 J band 10.000- 20.000
D band 1.000-2.000 K band 20.000- 40.000
E band 2.000-3.000 L band 40.000- 60.000
F band 3.000-4.000 M band 60.000-100.000
G band 4.000-6.000

TABLE 0-3 |EEE MICROWAVE FREQUENCY BANDS

Designation Frequency range in gigahertz
HF 0.003— 0.030
VHF 0.030- 0.300
UHF 0.300- 1.000
L band 1.000- 2.000
S band 2.000- 4.000
C band 4.000- 8.000
X band 8.000- 12.000
Ku band 12.000- 18.000
K band 18.000- 27.000
Ka band 27.000— 40.000
Millimeter 40.000-300.000
Submillimeter >300.000

0-2 MICROWAVE DEVICES

In the late 1930s it became evident that as the wavelength approached the physical
dimensions of the vacuum tubes, the electron transit angle, interelectrode capaci-
tance, and lead inductance appeared to limit the operation of vacuum tubes in mi-
crowave frequencies. In 1935 A. A. Heil and O. Heil suggested that microwave
voltages be generated by using transit-time effects together with lumped tuned cir-
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cuits. In 1939 W. C. Hahn and G. F. Metcalf proposed a theory of velocity modula-
tion for microwave tubes. Four months later R. H. Varian and S. F. Varian described
a two-cavity klystron amplifier and oscillator by using velocity modulation. In 1944
R. Kompfner invented the helix-type traveling-wave tube (TWT). Ever since then the
concept of microwave tubes has deviated from that of conventional vacuum tubes as
a result of the application of new principles in the amplification and generation of
microwave energy.

Historically microwave generation and amplification were accomplished by
means of velocity-modulation theory. In the past two decades, however, microwave
solid-state devices—such as tunnel diodes, Gunn diodes, transferred electron
devices (TEDs), and avalanche transit-time devices have been developed to perform
these functions. The conception and subsequent development of TEDs and avalanche
transit-time devices were among the outstanding technical achievements. B. K. Rid-
ley and T. B. Watkins in 1961 and C. Hilsum in 1962 independently predicted that
the transferred electron effect would occur in GaAs (gallium arsenide). In 1963 J. B.
Gunn reported his “Gunn effect.” The common characteristic of all microwave solid-
state devices is the negative resistance that can be used for microwave oscillation and
amplification. The progress of TEDs and avalanche transit-time devices has been so
swift that today they are firmly established as one of the most important classes of
microwave solid-state devices.

0-3 MICROWAVE SYSTEMS

A microwave system normally consists of a transmitter subsystem, including a mi-
crowave oscillator, waveguides, and a transmitting antenna, and a receiver subsys-
tem that includes a receiving antenna, transmission line or waveguide, a microwave
amplifier, and a receiver. Figure 0-1 shows a typical microwave system.

In order to design a microwave system and conduct a proper test of it, an ade-
quate knowledge of the components involved is essential. Besides microwave
devices, the text therefore describes microwave components, such as resonators, cav-
ities, microstrip lines, hybrids, and microwave integrated circuits.

Microwave Transmitting Receiving Output to
source horn antenna  horn antenna  oscilloscope or

Wavemeter  Calibrated power meter
attenuator
- ' l ] O

Stand Stand Stand

Waveguide

Waveguides termination

Crystal
mount

Figure 0-1 Microwave system.
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0-4 MICROWAVE UNITS OF MEASURE

Microwave measures can be expressed in different units, such as the CGS (centime-
ter-gram-second) unit, MKS (meter-kilogram-second) unit, or another unit. The
meter-kilogram-second units (the International System of Units) are used throughout
unless otherwise indicated. Table 0-4 lists the most commonly used MKS units.
The prefixes tabulated in Table 0-5 are those recommended by the Interna-

TABLE 0-4 MKS UNITS

Quantity Unit Symbol
Capacitance farad = coulomb per volt F
Charge coulomb: A — s Q
Conductance mhos U
Current ampere = coulomb per second A
Energy joule J
Field volt per meter E
Flux linkage weber = volt - second ¥
Frequency cycle per second Hz
Inductance henry = (V — s5)/A H
Length meter m
Power watt = joule per second w
Resistance ohm Q
Time second s
Velocity meter per second v
Voltage volt \%

Note: 1 tesla = 1 weber/m? = 10* gausses = 3 X 107% ESU
1 A (angstrom) = 10-°m
1 um (micron) = 107 m

TABLE 0-5 PREFIXES

. Prefix Factor Symbol
exa 1018 E
peta 10" P
tera 10" T
giga 10° G
mega 10¢ M
kilo 10° k
hecto 10? h
deka 10 da
deci 10! d
centi 10-2 c
milli 1073 m
micro 10-¢ n
nano 10-° n
pico 10712 p
femto 10718 f
atto 1018 a
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tional Committee on Weights and Measures. They have been adopted by the Na-
tional Bureau of Standards and are used by the Institute of Electrical and Electronics
Engineers, Inc.

The physical constants commonly used in the text are listed in Table 0-6.

The temperature scales commonly used in scientific work, engineering design,
and everyday life are shown in Table 0-7. Many engineering computations use the
absolute temperature in degrees Kelvin, and therefore a temperature conversion is
necessary to convert the temperatures from either centigrade or Fahrenheit to Kelvin
scale.

TABLE 0-6 PHYSICAL CONSTANTS

Constant Symbol Value
Boltzmann constant k 1.381 x 1072 J/°K
Electronvolt eV 1.602 X 107°7J
Electron charge q 1.602 x 107 C
Electron mass m 9.109 x 1073 kg
Ratio of charge to mass of an electron e/m 1.759 x 10" C/kg
Permeability of free space Mo 1.257 X 107* H/m or 4w X 1077 H/m
Permittivity of free space € 8.854 x 1072 F/m
Planck’s constant h 6.626 X 1073 ]J-g
Velocity of light in vacuum c 2.998 X 10% m/s

TABLE 0-7 TEMPERATURE SCALES

Rankine Fahrenheit Centigrade Kelvin
°R °F °C °K
Boiling point 671.4° I~ 212°q 100°q ~ 373°- |-
Ambient point 540° 80.6° 27°4F 300°H
fce point 491.4°H 2°qHF 0°qF 273°H |

0°+

Absolute zero 0° - -459.4°~ - -273°— = 0°— =




Chapter 1

Interactions Between
Electrons and Fields

1-Q INTRODUCTION

In this chapter we are concerned with electron-field interactions. The motion of the
electron beam is assumed to be in a uniform electric field, or a uniform magnetic
field, or a uniform electromagnetic field because the inhomogeneous differential
equations governing the motion of an electron beam in a field involve three dimen-
sions and their solutions in a nonuniform field are, in most cases, extremely difficult
to obtain and usually cannot be determined exactly. On the other hand, fortunately,
all present microwave devices employ a uniform field for the electron-field interac-
tions.

Our primary purpose here is to provide the reader with a background for un-
derstanding the electron-field interactions in microwave devices that will be dis-
cussed in later chapters.

1-1 ELECTRON MOTION IN AN ELECTRIC FIELD

In describing fields and electron-field interactions, certain experimental laws of elec-
tricity and magnetism are covered first. The fundamental force law of charges is
Coulomb’s law, which states that between two charges there exists either an attrac-
tive or a repulsive force, depending on whether the charges are of opposite or like
sign. That is,

0.0

= e RV newtons (1-1-1)
0
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where Q = charge in coulombs

}

1
€ = 8.854 X 10712 = ram X 107° F/m is the permittivity of free space

R = range between the charges in meters
u = unit vector

It should be noted that since the MKS system is used throughout this text, a factor of

41 appears in the preceding equation.
The electric field intensity produced by the charges is defined as the force per

unit charge—that is,

_F__90
E = 0" -l V/m (1-1-2)
If there are n charges, the electric field becomes
E=> <, (1-1-3)

'R,
m=1 47T€0R,2,, m

In order to determine the path of an electron in an electric field, the force must be
related to the mass and acceleration of the electron by Newton’s second law of mo-
tion. So

dv

F=—-¢E=ma= m— (1-1-4)

where m = 9.109 X 107*' kg, mass of electron
a = acceleration in meters per second squared
v = velocity of electron in meters per second
e = 1.602 x 107" C, charge of electron that is negative

It can be seen that the force is in the opposite direction of the field because the elec-
tron has a negative charge. Thus when an electron moves in an electric field E, it ex-
periences a force —e¢E newtons. The differential equations of motion for an electron
in an electric field in rectangular coordinates are given by

d*x e

ar = —;Ex (1-1-5a)
d*y e
P = —;Ey (1-1-5b)
d*z e
i = —;Ez (1-1-5¢)

where e/m = 1.759 X 10" C/kg is the ratio of charge to mass of electron and E,,
E,, E. are the components of E in rectangular coordinates.

In many cases, the equations of motion for electrons in an electric field in
cylindrical coordinates are useful. The cylindrical coordinates (r, ¢, z) are defined
as in Fig. 1-1-1.

It can be seen that



and, conversely,
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Figure 1-1-1 Cylindrical coordinates.

uZ
A Uy
P u,
0 z >y
¢ r
T
x=rcosd¢d
y = rsin¢
z=1z
(x2 + y2)1/2

r =

d):

z =

(Y - Y
t {2} = 1 —
an (x) sin P cos

z

9 X
(xz + y2)]/2

(1-1-6a)
(1-1-6b)
(1-1-6¢)
(1-1-7a)
(1-1-7b)

(1-1-7¢)

A system of unit vectors, u,, Uy, W, in the directions of increasing r, ¢, z, respec-
tively, is also shown in the same diagram. While u, is constant, u, and u, are func-

tions of ¢; that is,

u, = cos ¢ u, + sin ¢ u,

Uy =

Differentiation of Eqs. (1-1-8) with respect to ¢ yields

du,=u
N
duy _

b "

—sin ¢ . + cos ¢ u,

(1-1-8a)
(1-1-8b)

(1-1-9a)

(1-1-9b)

The position vector p can be expressed in cylindrical coordinates in the form

p =ru + zu,

(1-1-9¢)

Differentiation of Eq. (1-1-9¢) with respect to ¢ once for velocity and twice for ac-

celeration yields

_dp _dr dw,  dz ~_dr . db
Vo T a Y T T a T a T T
_dr o dé L dz

a T Tt T "

dw,  dz
dp dt

(1-1-10)
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a= v _ [dzr <@>2]u, + ( ¢ + 241@)% + iz—z-u,

ar  |arr ~ "\ar Tarr T “dr dr dr?
d*r d¢>2] 1 d( dd)) d*z
== -rl=— ==’ ="luy + —Su, 1-1-11
[dt2 r(dt W Ta\ a T e ( )
Therefore the equations of motion for electrons in an electric field in cylindrical co-
ordinates are given by
d’r dd))2 e
e r<dt = mE, (1-1-12a)
ld zd_¢> - _f
. dt(r ” mEd, (1-1-12b)
d*z e
o= _CFE 1-1-
i mE (1-1-12¢)

where E,, E;, and E, are the components of E in cylindrical coordinates.
From Eq. (1-1-4) the work done by the field in carrying a unit positive charge
from point A to point B is

B vg
—f E-d€=5"-f o dv (1-1-13)
A e

However, by definition, the potential V of point B with respect to point A is the
work done against the field in carrying a unit positive charge from A to B. That is,

B
V=- f E - d¢f (1-1-14)
A
Substitution of Eq. (1-1-14) in Eq. (1-1-13) and integration of the resultant yield
eV = —;-m(vﬁ - v}) (1-1-15)

The left side of Eq. (1-1-15) is the potential energy, and the right side represents the
change in kinetic energy. The unit of work or energy is called the electron voit (eV),
which means that if an electron falls through a potential of one volt, its kinetic
energy will increase 1 eV. That is,

levV = (1.60 X 107"° C)(1V) = 1.60 x 107"°J (1-1-16)
If an electron starts from rest and is accelerated through a potential rise of V volts,
its final velocity is

1/2
v = (?) = 0.593 X 10°VV m/s (1-1-17)

Since d{ is the increment of distance in the direction of an electric field E, the
change in potential dV over the distance d£ can be expressed as

|av| = Ed¢ (1-1-18)



10 Interactions Between Electrons and Fields Chap. 1

In vector notation it is
E=-VV (1-1-19)

where the symbol V is the vector operator in three coordinate systems. The minus
sign implies that the field is directed from regions of higher potential to those of
lower potential. Equation (1-1-19) is valid in regions in which there is space charge
as well as in regions that are free of charge.

1-2 ELECTRON MOTION IN A MAGNETIC FIELD

A charged particle in motion in a magnetic field of flux density B is experimentally
found to experience a force that is directly proportional to the charge Q, its velocity
v, the flux density B, and the sine of the angle between the vectors v and B. The
direction of the force is perpendicular to the plane of both v and B. Therefore the
force exerted on the charged particle by the magnetic field can be expressed in vec-
tor form as

F=0vwXxB (1-2-1)
Since the electron has negative charge, then
F=—-evXB (1-2-2)

The motion equations of an electron in a magnetic field in rectangular coordinates
can be written

d’x e dy dz)
> m <BZ a Pa (1-2-3a)
dzy__e( dz dx)
@~ m\Ba By (1-2-3b)
d’z e[ dx dy)
> m <B"’ a B (1-2-3c)

Since
v X B = (B.rvy — Byv)u, + (Bv. — B.vug + (Byvr — B.rog)u, (1-2-4)

the equations of motion for electrons in magnetic field for cylindrical coordinates
can be given by

d?r do\? e d dz

i r<g(?> = —;;(BJ% - B¢‘-1;> (1-2-5a)
1d{ ,d e( dz dr
L) = -2 (e k- 85 (1-2-50)

d’z e dr dd))
= m(Bd, B.r&’ (1-2-5¢)
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x ©s

e . . .
T ‘e Figure 1-2-1 Circular motion of an
Vy Yy electron in a transverse magnetic field.

Consider next an electron moving with a velocity of v, to enter a constant uni-
form magnetic field that is perpendicular to v, as shown in Fig. 1-2-1. The velocity
of the electron is assumed to be

vV = o, (1-2-6)

where u, is a unit vector in the x direction.

Since the force exerted on the electron by the magnetic field is normal to the
motion at every instant, no work is done on the electron and its velocity remains
constant. The magnetic field is assumed to be

B = B.u, (1-2-7)

Then the magnetic force at the instant when the electron just enters the magnetic
field is given by

F = —ev X B = evBu, (1-2-8)

This means that the force remains constant in magnitude but changes the direction
of motion because the electron is pulled by the magnetic force in a circular path.
This type of magnetic force is analogous to the problem of a mass tied to a rope and
twirled around with constant velocity. The force in the rope remains constant in
magnitude and is always directed toward the center of the circle and thus is perpen-
dicular to the motion. At any point on the circle the outward centrifugal force is
equal to the pulling force. That is,
2

R = evB (1-2-9)

where R is the radius of the circle.
From Eq. (1-2-8) the radius of the path is given by

= meters (1-2-10)
eB
The cyclotron angular frequency of the circular motion of the electron is
B
w=2=2 rad/s (1-2-11)
R m
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The period for one complete revolution is expressed by

T = Im _ 2mm seconds (1-2-12)
w eB

It should be noted that the radius of the path is directly proportional to the velocity

of the electron but that the angular frequency and the period are independent of ve-

locity or radius. This means that faster-moving electrons or particles traverse larger

circles in the same time that a slower-moving particle moves in a smaller circle.

This very important result is the operating basis of such microwave devices as

magnetic-focusing apparatus.

1-3 ELECTRON MOTION IN AN ELECTROMAGNETIC FIELD

If both electric and magnetic fields exist simultaneously, the motion of the electrons
depends on the orientation of the two fields. If the two fields are in the same or in
opposite directions, the magnetic field exerts no force on the electron, and the elec-
tron motion depends only on the electric field, which has been described in Section
1-1. Linear-beam tubes (O -type devices) use a magnetic field whose axis coincides
with that of the electron beam to hold the beam together as it travels the length of
the tube. In these tubes the electrons receive the full potential energy of the electric
field but are not influenced by the magnetic field.

When the electric field E and the magnetic flux density B are at right angle to
each other, a magnetic force is exerted on the electron beam. This type of field is
called a crossed field. In a crossed-field tube (M-type device), electrons emitted by
the cathode are accelerated by the electric field and gain velocity; but the greater
their velocity, the more their path is bent by the magnetic field. The Lorentz force
acting on an electron because of the presence of both the electric field E and the
magnetic flux B is given by

F=-¢E+vXxXB) =mdg:- (1-3-1)
The equations of motion for electrons in a crossed field are expressed in rectangular
coordinates and cylindrical coordinates, respectively, as

‘;_jf = —%(E, + BZ% — Byj—j) (1-3-2a)
- -t(p 4 p k- g ) (1-3-2b)
Z_;Z = —%<E, + By%f - B;%) (1-3-2¢)
%;—2’ - r(%‘f-’f = —%(E + Bzr‘—ZTb - B¢§> (1-3-3a)
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where

rdt
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d 2d¢> e ( dz dr)
—_ — -l = —— _+_ S — L -3-
(r o m E,+ B 7 B @ (1-3-3b)
d’z e dr do
- m (Ez + Bd,E B,r;t) (1-3-3¢)
— = w. = %B is the cyclotron frequency

dt

It is, of course, difficult to solve these equations for solutions in three dimensions. In
microwave devices and circuits, however, only one dimension is involved in most
cases. So the equations of motion become simple and can easily be solved. An ex-
ample may show how to solve some of the preceding equations.

Example 1-3-1:

Electron Motion in an Electromagnetic Field

The inner cylinder of radius a is the cathode and the outer shell with radius b is the
anode. A dc voltage V; is applied between the anode and cathode, and a magnetic flux
density B is into the page as shown in Fig. 1-3-1. The problem is to adjust the applied
voltage Vi and the magnetic flux density B to such levels that the electrons emitted
from the cathode will just graze the anode and travel in space between the cathode and
the anode only.

Solution

Figure 1-3-1 Electron motion in an
electromagnetic field.

1. Write the equations of motion for electrons in cylindrical coordinates.

b.

2. From (b)

d*r (dd))z e e do
— ) =+ - 22
ar \a .
li( zd_‘f’) _egdr
rdt dt m dr
d(b) 1 d e
240) _ 2 4 =£
i 5 e A r?» (wherc . Bo>
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dé 1
r’— = —w.r? + constant
a2

3. Application of the boundary conditions: At r = q,

(12@—1

= —w.a’ + constant
d 2
do 1
— =0 constant = ——w.a?
dt 2

Hence
dp 1
25— (r?2 — g2
e T 7% (r2 —a?
4. The magnetic field does no work on the electrons:
lmv2 = eV
2

2e dr\? d¢>2
2 . =& = 442 + 2 — [ + el
v - V=uv +uv; (dt) (r i

5. For grazing the anode,

r==b V=V x =0
d¢>2 e b 1
A CP) £ 228 = . (b? — P
(dt Vo and b ” 5@ ( a?)
1 a\[? 2e
vlzei-5)] = 2w
6. The cutoff voltage is
= . pyofq - f)z 3.
Voo 8mBob (1 b2 (1-3-3d)

This means that if V, < V. for a given By, the electrons will not reach the anode. Con-
versely, the cutoff magnetic field can be expressed in terms of Vi

_ (8Vem/e)?
B = 50 = @) (1-3-4)

This implies that if B, > B for a given V;, the electrons will not reach the anode.
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PROBLEMS

1-1.

At time t = to an electron is emitted from a planar diode with zero initial velocity and

the anode voltage is +15 V. At time ¢ = 1, the electron is midway between the plates

and the anode voltage changes discontinuously to —30 V.

a. Determine which electrode the electron will strike.

b. Compute the kinetic energy of the electron in electronvolts (eV) when it strikes the
electrode.

A circular cavity is constructed of a center conductor and an outer conductor. The in-

ner center conductor has a radius of 1 cm and is grounded. The outer conductor has a

radius of 10 cm and is connected to a power supply of + 10 kV. The electrons are emit-

ted from the cathode at the center conductor and move toward the anode at the outer

conductor.

a. Determine the magnetic flux density B in webers per square meter in the axial di-
rection so that the electrons just graze the anode and return to the cathode again.

b. If the magnetic flux density B is fixed at 4 mWb/m?, find the required supply
voltage so that the electrons just graze the anode and return to the cathode again.



Chapter 2

Electromagnetic Plane
Waves

2.0 INTRODUCTION

Since Maxwell’s fundamental concepts of electromagnetic wave theory have been
established, the electric and magnetic wave equations can readily be derived from
Faraday’s electromotive force law, Ampere’s circuital law, and Gauss’s law for the
electric and magnetic fields. In Chapter 1 interactions between electron and field
were discussed. Here electromagnetic plane waves are described in detail. Many
topics associated with electromagnetic waves, such as Poynting theory, reflection
theory, attenuation concepts, and plane-wave propagation in metallic-film coating on
plastic substrates, are also analyzed, for these basic principles are used frequently in
later chapters.

The principles of electromagnetic plane waves are based on the relationships
between electricity and magnetism. A changing magnetic field will induce an elec-
tric field, and a changing electric field will induce a magnetic field. Also, the in-
duced fields are not confined but ordinarily extend outward into space. The sinu-
soidal form of the wave causes energy to be interchanged between the magnetic and
electric fields in the direction of the wave propagation.

A plane wave has a plane front, a cylindrical wave has a cylindrical front, and
a spherical wave has a spherical front. The front of a wave is sometimes referred to
as an equiphase surface. In the far field of free space, electric and magnetic waves
are always perpendicular to each other, and both are normal to the direction of prop-
agation of the wave. This type of wave is known as the transverse electromagnetic
(TEM) wave. If only the transverse electric wave exists, the wave is called TE-mode
wave. That means there is no component of the electric wave in the direction of
propagation. In TM modes only the transverse magnetic wave exists.

16
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2-1 ELECTRIC AND MAGNETIC WAVE EQUATIONS

The electric and magnetic wave equations can be basically derived from Maxwell’s
equations, which in time domain are expressed as

B
XE=-— 2-1-1
VxE P (2-1-1)
vxH=J+2 (2-1-2)
ot
V-D=p, (2-1-3)
V-B=0 (2-1-4)
where the vector operator V is expressed by
d d d
V=—u+_—u+—u i -1-
U 3y u, + —u (cartesian) (2-1-4a)
V=iu +_8_“ +i (cylindrical) (2-1-4b)
Y T Tae 6 aZuz ylindrica -1-
d 0 1 9
V=—u+— (spherical) (2-1-4¢)

ar raf)ue rsineﬁud’

It should be noted that boldface roman letters indicate vector quantities or complex
quantities. The units of these field variables are

E = electric field intensity in volts per meter
H = magnetic field intensity in amperes per meter
D = electric flux density in coulombs per square meter

B = magnetic flux density in webers per square meter or in tesla
(1 tesla = 1 weber/m* = 10* gausses = 3 X 107% ESU)

J = electric current density in amperes per square meter
p. = electric charge density in coulombs per cubic meter

The electric current density includes two components—that is,
J=Jc.+ (2-1-5)

o E is called the conduction current density
the impressed current density, which is independent of the field

where J.

Jo

The current density source Jo may really be a current prescribed by an external
agency, but more often it is simply one which we know from measurements before
we start to find the fields. Alternatively, Jo is often the current on a surface or in a
region [1]. In most cases, however, the current density source Jo may not exist.
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In addition to Maxwell’s four equations, the characteristics of the medium in
which the fields exist are needed to specify the flux in terms of the fields in a specific
medium. These constitutive relationships are

D = €¢E (2-1-6)
B = uH (2-1-7)
J. = cE (2-1-8)
€ = €6 (2-1-9)
K= o (2-1-10)

where € = dielectric permittivity or capacitivity of the medium in farads per meter
€, = relative dielectric constant (dimensionless)
8.854 X 1072 = 1/(36m) x 107° F/m is the dielectric permittivity of

l

€ —
vacuum or free space
1 = magnetic permeability or inductivity of the medium in henrys per meter
. = the relative permeability or relative inductivity (dimensionless)
o = 47 X 1077 H/m is the permeability of vacuum or free space

o = conductivity of the medium in mhos per meter

If a sinusoidal time function in the form of e/’ is assumed, d/d¢ can be re-
placed by jw. Then Maxwell’s equations in frequency domain are given by

V X E = — jouH (2-1-11)
VxH= (o + jwe)E (2-1-12)
V-D=p, (2-1-13)
V-B=0 (2-1-14)
Taking the curl of Eq. (2-1-11) on both sides yields
VXVXE=—jouV xH (2-1-15)
Substitution of Eq. (2-1-12) for the right-hand side of Eq. (2-1-15) gives
VXxVXE=—joulc + jwue)E (2-1-16)
The vector identity for the curl of the curl of a vector quantity E is expressed as
VxVxE=-VE+ V(V-E) (2-1-17)

In free space the space-charge density is zero, and in a perfect conductor time-
varying or static fields do not exist. So

V-D=p =0 (2-1-18)
V-E=0 (2-1-19)

Substitution of Eq. (2-1-17) for the left-hand side of Eq. (2-1-16) and replacement
of Eq. (2-1-19) yield the electric wave equation as

V’E = y’E (2-1-20)
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where ¥ = Vjou(o + jwe) = a + jB is called the intrinsic propagation
constant of a medium
a = attenuation constant in nepers per meter
B = phase constant in radians per meter

]

Similarly, the magnetic wave equation is given by

V’H = y*H (2-1-21)
It should be noted that the “double del” or “del squared” is a scalar operator—that
is,

vV-v=V (2-1-22)
which is a second-order operator in three different coordinate systems. In rectangu-
lar (cartesian) coordinates,

I A &

2 — 4+ + — 2-1-
v ax?  dy?  9z2 (2-1-23)
In cylindrical (circular) coordinates,
1of o 1 @ 9°
2 =2 ) = — -1-
v r ar<r ar) rrog?  9z° (2-1-24)

In spherical coordinates,
19 0 1 4 9 1 92
V2= —[p2=] + g . 9 4 s »
r? 3r<r 6r> r’sin 6 ae(sm 0 a()) r2sin® 6 3¢ (2-1-24a)

Also, the solutions of Egs. (2-1-1) and (2-1-2) solved simultaneously yield the elec-
tric and magnetic wave equations in the time domain as

oE ’E
2 — - -+ —_ -1-
VE = uo Iy e e (2-1-25)
oH 0*H
2 = + — -1-
V’H = uo Pl L (2-1-26)

2.2 POYNTING THEOREM

At what rate will electromagnetic energy be transmitted through free space or any
medium, be stored in the electric and magnetic fields, and be dissipated as heat?
From the standpoint of complex power in terms of the complex field vectors, the
time average of any two complex vectors is equal to the real part of the product of
one complex vector muitiplied by the complex conjugate of the other vector. Hence
the time average of the instantaneous Poynting vector in steady state is given by

(P) = (E X H) = }Re(E x H¥) (2-2-1)

where the notation ( ) stands for the average and the factor of 1/2 appears in the
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equation for complex power when peak values are used for the complex quantities E
and H. Re represents the real part of the complex power, and the asterisk indicates
the complex conjugate.

It is necessary to define a complex Poynting vector as

P = ;(E x H*) (2-2-2)

Maxwell’s equations in frequency domain for the electric and magnetic fields are
VX E = — jouH (2-2-3)
VxH=]+ jweE (2-2-4)

Dot multiplication of Eq. (2-2-3) by H* and of the conjugate of Eq. (2-2-4) by E
yields

(VXE) -H* = — jopH - H* (2-2-5)
(Vx H*) - E = (J* — jweE*) - E (2-2-6)
Then subtraction of Eq. (2-2-5) from Eq. (2-2-6) results in
E-(VxH¥)—H* - (VXE) =E:J*— jolE? - uHP (2-2-7)
where E - E* is replaced by | E|* and H - H* by |H |~

The left-hand side of Eq. (2-2-7) is equal to —V - (E X H*) by the vector
identity. So

V-(EXH*) = -E-J*+ jo(e|E[? — u|HP) (2-2-8)
Substituting Egs. (2-1-5) and (2-2-2) into Eq. (2-2-8), we have
—1E-J§ =10E -E* + jo(buH - H* — ieE - E*¥) + V- P (2-2-9)

Integration of Eq. (2-2-9) over a volume and application of Gauss’s theorem to the
last term on the right-hand side give

f%(E - J¥)dv = f%(ﬂElzdv + j2w f (Wm — we)dv + iﬁp ds  (2-2-10)
5 v 5

v v

where 30| E|* = o (| E|? is the time-average dissipated power
ipH - H* = Ju( H|)* = w, is the time-average magnetic stored energy
1€E - E* = {€(|E|>) = w. is the time-average electric stored energy
—3E - J¥ = the complex power impressed by the source Jo into the field

Equation (2-2-10) is well known as the complex Poynting theorem or the Poynting
theorem in frequency domain.
Furthermore, let

Pun = — f 3(E - J¥)dv be the total complex power suplied by a source
v within a region
(P = f 30| E|*dv be the time-average power dissipated as heat inside

v the region
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W, — W) = f (wm — wo)dv  be the difference between time-average magnetic
v and electric energies stored within the region
P, = § P-ds be the complex power transmitted from the region

The complex Poynting theorem shown in Eq. (2-2-10) can be simplified to
Po = (P + j20[(W, — W)] + Py (2-2-11)

This theorem states that the total complex power fed into a volume is equal to the
algebraic sum of the active power dissipated as heat, plus the reactive power propor-
tional to the difference between time-average magnetic and electric energies stored
in the volume, plus the complex power transmitted across the surface enclosed by
the volume.

2-3 UNIFORM PLANE WAVES AND REFLECTION
2-3-1 Uniform Plane Waves

A plane wave is a wave whose phase is constant over a set of planes. A uniform
plane wave is a wave whose magnitude and phase are both constant. A spherical
wave in free space is a uniform plane wave as observed at a far distance. Its equi-
phase surfaces are concentric spheres, expanding as the wave travels outward from
the source, and its magnitude is constant.

Electromagnetic waves in free space are typical uniform plane waves. The
electric and magnetic fields are mutually perpendicular to each other and to the di-
rection of propagation of the waves. The phases of the two fields are always in time
phase and their magnitudes are always constant. The stored energies are equally di-
vided between the two fields, and the energy flow is transmitted by the two fields in
the direction of propagation. Thus a uniform plane wave is a transverse electromag-
netic wave or a TEM wave.

A nonuniform plane wave is a wave whose amplitude (not phase) may vary
within a plane normal to the direction of propagation. Consequently, the electric and
magnetic fields are no longer in time phase.

Since a uniform plane wave of electric or magnetic field has no variation of in-
tensity in a plane normal to the direction of propagation of the wave, then

OB _OE_ oM _oH_

= = 0 =
ox  dy ox dy

0

if the direction of propagation is assumed in the positive z direction.

With the preceding assumptions and lossless dielectric—that is, ¢ = 0—the
wave equations (2-1-25) and (2-1-26) in time domain for the electric and magnetic
intensities in free space for rectangular coordinates reduce to

e O 0°E,

P Ho€o— (2-3-1)
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*H o’H,
az; = Hoor— 3 (2-3-2)

in which the electric intensity is arbitrarily chosen in the x direction and the mag-
netic intensity in the y direction. With no loss in generality, it can be assumed that
the electric intensity is given by

E = Eoel@=FD = Eoejw(t—w/w)l} (2_3_3)
The magnetic intensity can be obtained by inserting Eq. (2-3-3) into the curl equa-
tion
V X E = — jouH (2-3-4)
For the assumed conditions, the curl equation reduces to
o, .
— = —JjomH, (2-3-5)
0z

Differentiation of Eq. (2-3-3) with respect to z and substitution of the result in Eq.

(2-3-5) yield
H, = \2E, (2-3-6)
Mo

1. . o
where — = V uoep = — is accounted for in the derivation
Up
1
V o€

= ¢, the velocity of light in vacuum
a=90
B = o'V o€ is phase constant

v, = 3 X 10® m/s is phase velocity

The ratio of electric to magnetic intensities is given by

E, _ Mo _
H, =1 = \/ o 377 ) (2-3-7)

It is called the intrinsic impedance of free space.

Figure 2-3-1 shows uniform electric and magnetic plane waves in rectangular
coordinates. In general, for a uniform plane wave propagating in a lossless dielectric
medium (o = 0), the characteristics of wave propagation would become

a=0 (2-3-8a)

B = 0V e (2-3-8b)
Ho Mo

=\—-= 2-3-8¢

n p \/; ( )
1 c

(2-3-8d)
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z

Figure 2-3-1 Uniform plane waves
traveling in the z direction.

2-3-2 Boundary Conditions

Since Maxwell’s equations are in the form of differential rather than algebraic equa-
tions, boundary conditions must be applied to a given problem if a specific solution
is required.

There are four basic rules for boundary conditions at the surface between two
different materials:

1. The tangential components of electric field intensity are continuous across the
boundary.

2. The normal components of electric flux density are discontinuous at the
boundary by an amount equal to the surface-charge density on the boundary.

3. The tangential components of magnetic field intensity are discontinuous at the
boundary by an amount equal to the surface-current density on the boundary.

4. The normal components of magnetic flux density are continuous across the
boundary.

The four statements can be proved by applying Faraday’s law, Gauss’s law,
Ampere’s law, and V - B = 0 to the boundaries of Fig. 2-3-2(a) and (b).
It can be seen from the diagrams that

§E-d€=E,1A€—E,2A€=O
%D-ds=Dn1As—Dn2As=pJAs
éH-d€=H,1A€—H,2A€=J:A€

§B'dS=Bn1AS"‘B"2AS=0
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Medium 1 | Medium 2 Medium 1 f Medium 2
Ent TErz H:lT ] tHrZ
ATF ]
Dy /D,y B \/B
" " nl "2 Figure 2-3-2 Boundary conditions. (a)

(a) (b) Electric intensity. (b) Magnetic intensity.

So the boundary equations are

Ey = En (2-3-9a)
Do = Dn + ps (2-3-9b)
Hy =H, + J; (2-3-9c)
B = B (2-3-94)

If medium 2 is a perfect conductor (o = =, €, = 1, u, = 1) and medium 1 is a per-
fect dielectric (vacuum or free space, o = 0, €, o), then

Ei = —’z—: =0 (2-3-10a)
Du = €En = ps (2-3-10b)
Hi=0 ifJ.=0 (2-3-10c)
By =0 (2-3-10d)

2.3-3 Uniform Plane-Wave Reflection

Normal-incidence reflection. The simplest reflection problem is that of a
uniform plane wave normally incident on a plane boundary between two dielectric
media with no surface-charge density and surface-current density. This situation is
shown in Fig. 2-3-3.

In medium 1 the fields are the sum of an incident wave plus a reflected wave,
respectively.

EQ = Ey(e 17 + o) (2-3-11)
HY = é(e*jﬁpz — o) (2-3-12)
m

il

where 81 = o'V ui€

m= \IE—’ =T _ intrinsic wave impedance of medium 1
€}

Ve,

reflection coefficient

s
i
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Y
Medium 1 Medium 2
Incident wave
My, €9
_
bio € Transmitted wave
-—
Reflected wave
» , Figure 2-3-3 Uniform plane-wave
X)X reflection.

In medium 2 there are transmitted waves:

E? = E Te /#r (2-3-13)
H§2) = E_O Te /B2 (2-3-14)
2

where B, = 0oV €

2 0 . P - .
\/ B2 ™ _ intrinsic wave impedance of medium 2
€2

’r’ =
: Ve,
T = transmission coefficient
For continuity of wave impedance at the boundary, the wave impedance is
EW 1+T E®@
Z.=—— =Mm——==T55 = 2-3-15
H)(,l) -0 7’11 -T H}(};) -0 2 ( )
Hence the reflection coefficient is given by
=" (2-3-16)

T mtm

From the boundary condition the tangential components of electric field intensity
are continuous across the interface. Then

E{Y =E(l1+T)=E® = ET (2-3-17)
z=0 z=0
Hence the transmission coefficient is expressed as
T=1+T=—21_
Mt m

If medium 1 is lossless dielectric (that is, & = 0), the standing-wave ratio is defined
as

(2-3-18)

__|EQ«| 14T
SWR = p = EL] 1=T (2-3-19)
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The power density transmitted across the boundary is

E2
e = —12—(E xH | u = E,OZ“ Y (2-3-20)

Then
Pu = pinc(l - I‘Z) (2‘3-21)

where pi,. is the incident power density.
The incident power density minus the transmitted power density would yield
the reflected power density as

pref = pincr2 (2'3-22)

Oblique-incidence reflection.

E Is in the Plane of Incidence. The plane of incidence is defined by the di-
rection of propagation and the line normal to the boundary. The linearly polarized
uniform plane waves with E lying in and H normal to the plane of incidence are im-
pinging obliquely on a boundary between two lossless dielectric materials as shown
in Fig. 2-3-4.

Whenever a wave is incident obliquely on the boundary surface between two
media, the polarization of the wave is vertical or horizontal if the electric field is
normal to or parallel to the boundary surface. The terms horizontal and vertical po-
larization refer to the phenomenon of waves from horizontal and vertical antennas,
respectively, producing the corresponding orientations of wave polarization when

Normal
Incident wave Reflected wave

B, = B; sin ; By =B, sind,

018 =61 080 | g =g, cosp, 0

€1, 4y, 0y
AN

€2 Boundary
M2

02

Transmitted wave

Figure 2-3-4 Reflection and transmission of oblique incidence.
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the waves strike the surface of the earth. For guided waves in waveguides, the terms
transverse electric (TE) and transverse magnetic (TM) are used to designate the fact
that either the electric or the magnetic field is normal to the direction of propaga-
tion. The polarization of a wave is an extremely useful concept for computing elec-
tromagnetic power flow. For example, a Poynting vector indicates that the power-
flow density is the cross product of an electric and a magnetic field with the specific
direction determined by the polarizations of the two fields.

As Fig. 2-3-4 shows, for a lossless dielectric medium, the phase constants (or
propagation constants) of the two media in the x direction on the interface are equal
as required by the continuity of tangential E and H on the boundary. Thus

Bisin 6, = B, sin 6, (2-3-23a)

B: sin 8; = B, sin 6, (2-3-23b)

From Eq. (2-3-23a), since 3; = 8, = B, the angle of reflection is equal to the an-
gle of incidence. This is

6 =0, (2-3-24)

sinf, _ Bi_va e
sin 0,‘ B; 0 M2 €2 (2_3-25)

where v represents the phase velocity. This is well known as Snell’s law. In general,

all low-loss dielectrics have equal permeability—that is, p; = 2 = uo. If medium

2 is free space and medium 1 is a nonmagnetic dielectric, the right-hand side of Eq.

(2-3-25) becomes \/e_,, which is called the index of refraction of the dielectric.
The components of electric intensity E are

From Eq. (2-3-23b)

E. = E, cos f,e/P1lxsinbitzcos6) (2-3-26)
E,=0 (2-3-27)
E, = —E, sin ;¢ /Pitxsinfitzcost) (2-3-28)
The components of magnetic intensity H are

H.=0 (2-3-29)
H, = % o~ /Blxsin6+2cos 6) (2-3-30)
H.=0 (2-3-31)

The wave impedance in the z direction is given by
Z, = g—x- = 7 cos 0 (2-3-32)

y

It should be noted that the subscripts of n and 6 have dropped because the wave
impedances of the two regions in the z direction are the same.
The wave impedance can be expressed in terms of the reflection coefficient of
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the normal components at the boundary z = 0. In medium 1

EY = Ey cos Qe Przeosbi + [piPrzeostr] (2-3-33)
E , )
H;” — 7’9[6—_;[31zcos(9,- _ l"ejﬁlzcos(),] (2_3_34)
1
EY 1+ T
Z, = HO |, = 1 COS 0,-1 T (2-3-35)
y' =

The impedance must be equal to the z-directed wave impedance in region 2 at the
boundary. Substitution of Z. = 7, cos 6; in Eq. (2-3-35) yields

_ 72 COS 6, — M1 COS 6;

2-3-36
72 cos 6, + 1, cos B; ( )
Then the transmission coefficient is given by
2 0,
r= - (2-3-37)

B 72 cos 6, + m cos O;

The preceding two equations are known as Fresnel’s formulas for E in the plane of
incidence.

H Is in the Plane of Incidence. If H is in the plane of incidence, the com-
ponents of H are

H. = H, cos ;¢ /Piixsinfitzcos) (2-3-38)
H,=0 (2-3-39)
H. = —H, sin §;e /P1lxsindj+zcosb) (2-3-40)
The components of electric intensity E normal to the plane of incidence are
E. =0 (2-3-41)
E, = —m Hoe Pilxsinti+zcos6) (2-3-42)
E.=0 (2-3-43)

The wave impedance in the z direction is given by

E, n
Zz = —— = = 4] -3-44
H., «cosé m se¢ (2-3-44)

It should be noted that the subscripts of 7 and & have been dropped for the same rea-
son stated previously.
Fresnel’s formulas for H in the plane of incidence are

_ M2sec B, — m sec B;
72 sec 8; + 1 sec

(2-3-45)

2m: sec 6,
T = a
72 sec 6, + 7 sec 6, (2-3-46)
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2-4 PLANE-WAVE PROPAGATION IN FREE SPACE
AND LOSSLESS DIELECTRIC

2-4-1 Plane-Wave Propagation In Free Space

The electromagnetic wave being propagated in free space near the surface of the
earth is divided into two parts: the ground wave and the sky wave or ionosphere
wave. The ground wave is further divided into a direct wave, an earth-reflected
wave, and a surface wave. Figure 2-4-1 shows the wave components of electromag-
netic wave from a nondirectional antenna to a receiving station.

Sky wave
Reflected wave

Receiving
antenna

Transmitting
antenna

Surface wave

Figure 2-4-1 Wave components near
Earth ‘ the surface of the earth.

The ionosphere is that region of the earth’s atmosphere in which the con-
stituent gases are ionized by solar radiation. This region extends from about 50 km
above the earth to several earth radii and has different layers designated as C, D, E,
and F layers in order of height. The electron-density distribution of each layer varies
with the time of day, season, year, and the geographical location. During the day
the electron density N is approximately 10'? electrons per cubic meter at an altitude
between 90 and 1000 km. The E and F layers have a permanent existence, but the D
layer is present only during the day. The electron density determines the reflection
and refraction of microwaves. For vertical incidence, the critical frequency is given

by
Er = 9V Nmax Hz (2-4'1)

This means that a microwave of frequency F.. will be reflected back to the earth if
the electron density is equal to or higher than the required maximum electron den-
sity Nmax (electrons per cubic meter).

The sky wave reaches the receiving station after reflection from the iono-
sphere. Although important in many communication systems, the sky wave need not
be considered in most microwave applications because a wavelength shorter than
about 4 m will not return to the earth from the ionosphere. The reflected wave is
reflected from the earth in such a way as to reach the receiver. Energy radiated from
the nondirectional antenna of Fig. 2-4-1 strikes the earth at all points between the
base of the antenna and the horizon, but only that wave which leaves the antenna in
the direction shown reaches the receiver. The surface wave is a wave diffracted
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around the surface of the earth or guided by the ground-air interface. This compo-
nent is important at broadcast frequencies; at microwave frequencies, however, the
surface wave is rapidly attenuated, and at a distance of 2 km from the antenna it has
an amplitude of only a fraction of 1% of the direct wave. This component must be
considered in blind-landing systems in which ranges of less than 2 km are important.
The direct wave travels a nearly straight path from the transmitting antenna to the re-
ceiving station. It is the only wave considered in this book. The term free space will
be used to denote vacuum or any other medium having essentially the same charac-
teristics as vacuum, such as open air, anechoic chamber, and shielded enclosure.
When power radiates from the transmitting antenna, the power density carried by
the spherical wave will decrease with distance as the energy in the wave spreads out
over an ever-increasing surface area as the wave progresses.
The power density is given by

pa = 4—1;5{2 W/m? (2-4-2)

where p, = transmitting power in watts
g = transmitting antenna gain (numerical)

R = distance between antenna and field point in meters
The power received by the receiving antenna is given as
P8 Ay
r = ¢ = — —_— r —4-
Pr = DaA (44rR2> (%g ) watts (2-4-3)

A? . .
where A, = 4—g, = effective antenna aperture in square meters
T

A? . . .

e A, = isotropic antenna aperture in square meters
v

g- = receiving antenna gain (numerical)

Figure 2-4-2 shows the relationships of electromagnetic energy transmission in free
space between two antennas.

Transmitting _ R » Receiving
antenna antenna
Transmitter Receiver
G, G,

P, P,

If the received power is expressed in terms of decibels, Eq. (2-4-3) becomes
41rR)
A
where P, is in dBW, G, and G, are in decibels (dB). The term 20 log (4wR/A) is well
known as the free-space attenuation in decibels. It can easily be found from the stan-

Figure 2-4-2 Electromagnetic energy
transmission between two antennas.

P.=P + G + G — 20 log ( dBW (2-4-4)
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dard nomograph shown in Fig. 2-4-3. For example, if the wavelength of a signal is
0.03 m and the range is 20 m, the free-space attenuation is about 79 dB.

It should be noted that the free-space attenuation is entirely different from the
dissipative attenuation of a medium such as atmosphere that absorbs energy from the
wave. The factor (4wR?) in Eq. (2-4-3) simply accounts for the fact that the power
density is inversely proportionally decreasing with the squared distance when the en-
ergy spreads out over free space. The factor (A?/44r) is the isotropic aperture of a re-
ceiving antenna. It does not imply that a higher-frequency wave decreases in magni-
tude more rapidly than a lower-frequency wave. It is simply a consequence of the
fact that, for a given antenna gain, the aperture of a higher-frequency antenna is
smaller than that of a lower-frequency antenna so that it intercepts a smaller amount
of power from the wave.

o N R
3 10,000
300 0.1 150 -3 3000
200 =
140 3 5000
_g 4000
100 130 3 3000
= 2000
50 120 3
40 3
30 “0_5 1000
20 3
1003 500
3 400
0 903 300
= 200
5 80
4 3
3 703 100
2 E
~ 603 50
< = 2 3
oo} g Z = 40
S 1F30 ° § _ 3 10
> §n 2 50 3 E 3 2
: 0§ 2 3 3 3
= 50 2 g 3 g 20 ¢
L) o 3
= 05 = < 40 3 ~x 5 ~
0.4 3 4}7
0.3 100 3 3 10

Figure 2-4-3 Nomograph of free-space attentuation.
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2.4-2 Plane-Wave Propagation in Lossless Dielectric

The lossless dielectric, which is often called the good or perfect dielectric, is charac-
terized by o = 0. Hence the intrinsic impedance for a lossless dielectric can be ex-
pressed in terms of air. This is

€ €€

The attenuation constant « is zero, and the phase constant 8 is given by

B =0Vue (2-4-6)

377
= — ohms (2-4-5)
Ve,

The phase velocity is expressed by
1

D =
P /;e

(2-4-7)

2-5 PLANE-WAVE PROPAGATION IN LOSSY MEDIA

The lossy media are characterized by o # 0. There are three types of lossy media:
good conductor, poor conductor, and lossy dielectric, which are discussed in this
section. The presence of a loss in the medium introduces wave dispersion by con-
ductivity. Dispersion makes a general solution in the time domain impossible except
by Fourier expansion methods. Thus only solutions for the frequency domain (or
steady state) will be given.

The electric and magnetic wave equations in the frequency domain as shown in
Egs. (2-1-20) and (2-1-21) are repeated here:

V?E = jou(o + jwe)E (2-5-1)

V’H = jou(o + jwe)H (2-5-2)
For one dimension in the positive z direction, they become

9%E,

Frel jou (o + jwe)E, (2-5-3a)

*H, . .

622' = jou(oc + jwe)H, (2-5-3b)

The complex-frequency solutions would be given by

E. = Ese " cos (wt — Bz) (2-5-4)
E
H, = ;Oe"” cos (wt — Bz) (2-5-5)

where v = Vjou(o + jwe) = a + jB

Jop

n= o + jwe
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2-5-1 Plane Wave in Good Conductor

A good conductor is defined as one having a very high conductivity; consequently,
the conduction current is much larger than the displacement current. The energy
transmitted by the wave traveling through the medium will decrease continuously as
the wave propagates because ohmic losses are present. Expressed mathematically, a
good conductor requires the criterion

o > we (2-5-6)

The propagation constant vy is expressed as

y = Vijoulo + jwe) = joVue\/1 - J_
= jo'V e —j— for Z > 1

wEe

1
= jVopeV-j = ”r_&FJVQ (2-5-7)
= (1 + ) Vrfuo

Hence
a =B = Vafur (2-5-8)
The exponential factor e™* of the traveling wave becomes ¢! = 0.368 when
r=—r (2-5-9)

Vrfuo

This distance is called the skin depth and is denoted by

1 1 1
= =—== 2-5-10
Vafueo a B ( )

Interestingly, at microwave frequencies the skin depth is extremely short and a piece
of glass with an evaporated silver coating 5.40-um thick is an excellent conductor at
these frequencies. Table 2-5-1 lists the conductivities of materials.

The intrinsic impedance of a good conductor is given as

_ Jjop _ Jou 5
n V—a%—jwe \/—0_ for o > we
lop , o L jop
= \/—/45° = (1 + —_— 2-5-11
T 2 ( J) 20 ( )

=1+ os= 0+ )R

in which R; = V wu/(20) is known as the skin effect and the magnitude of the con-
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TABLE 2-5-1 TABLE OF CONDUCTIVITIES

Conductivity o

Substance Type (mhos/m)
Quartz, fused insulator 1077 approx.
Ceresin, wax insulator 1077 approx.
Sulfur insulator 107" approx.
Mica insulator 107'5  approx.
Paraffin insulator 1071 approx.
Rubber, hard insulator 107! approx.
Glass insulator 1072 approx.
Bakelite insulator 107  approx.
Distilled water insulator 10~*  approx.
Seawater conductor 4 approx.
Tellurium conductor 5 x 10? approx.
Carbon conductor 3 x 10* approx.
Graphite conductor 10° approx.
Cast iron conductor 10° approx.
Mercury conductor 10°
Nichrome conductor 10°
Constantan conductor 2 x 100
Silicon steel conductor 2 x10°
German silver conductor 3 x10°
Lead conductor 5 X 10°
Tin conductor 9 X 10°
Phosphor bronze conductor 107
Brass conductor 1.1 x 107
Zinc conductor 1.7 x 107
Tungsten conductor 1.8 x 107
Duralumin conductor 3 ox
Aluminum, hard-drawn conductor 3.5 x 107
Gold conductor 4.1 x 107
Copper conductor 5.8 x 107
Silver conductor 6.1 x 107

ductor surface resistance. The average power density for a good conductor is given
by

p =3|HI’R, (2-5-12)
and the phase velocity within a good conductor is
v = wd (2-5-13a)

The reflectivity and transmittance of a good conductor in vertical and horizontal po-
larizations are usually measured in terms of the grazing angle. The grazing angle
is defined as the angle between the incident ray and the media boundary.

Vertical polarization. From Fig. 2-3-4 it can be seen that ¢ = 90° — 6,;
then sin ¢ = cos 6, sin 8, = cos i, sin’ 6, + cos’ 6, = 1, and v, sin §, = v, sin 6.
The vertical reflectivity of a good conductor for the tangential components of elec-
tric intensity as shown in Eq. (2-3-36) is simplified to
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_ mall — (v2/vy cos )] — g sin
[, = 1 — (v2/01 cos $)2]7% + m, sin ¢ (2-5-13b)

For vertical polarization, the normal components of the electric fields are generally
used to determine the reflection coefficient. From Fig. 2-3-4 it can be seen that the
vertical components of the incident and reflected electric fields are in opposite direc-
tions. Therefore the reflectivity of a good conductor in vertical polarization is

_ mising — [l — (v2/v: cos )]
I, = M sin ¢ + 1 — (v2/v1 cos P)?]"/? (2-5-13c¢)

Similarly, the vertical transmittance of a good conductor for electric fields as shown
in Eq. (2-3-37) is given by

T = 21 — (v2/v1 cos )]

T a1 = (va/vs1 cos Y)?]V2 + my sin @ (2-5-13d)

Horizontal polarization. The reflectivity of a good conductor for electric
fields in horizontal polarization as shown in Eq. (2-3-45) is simplified in terms of ¢/
as

_ masin g1 — (va/v: cos )12 — 7

L 2 sin Y[1 — (v2/v1 cos P)*]72 + m, (2-5-13¢)
Similarly, the transmittance of a good conductor for electric fields in horizontal po-
larization as shown in Eq. (2-3-46) can be expressed as

7 = — 2mall = (02/vr cos Y]
"7 masin ¢[1 — (v2/vr cos )72 + m,
In Fig. 2-3-4 it is assumed that medium 1 is free space or air and that medium 2 is
copper; then

(2-5-13f)

=377Q =1+ j —
m m = ( b)) 20

[ 2w
v,=3><108m/s Uz=w6= -_—
no

The conductivity o of copper is 5.8 X 10’ mhos/m and its relative permeability is
unity. The magnitudes of reflectivity of copper for vertical and horizontal polariza-
tions are computed by Eqgs. (2-5-13c) and (2-5-13e) against the grazing angle ¢ of 0
to 90° at a frequency range of 0.1 to 40 GHz. This result indicates that copper is a
perfect reflector for electromagnetic waves.

)

2-5.2 Plane Wave in Poor Conductor

Some conducting materials with low conductivity normally cannot be considered
either good conductors or good dielectrics. Seawater is a good example. It has a con-
ductivity of 4 mhos/m and a dielectric constant of 20. At some low frequencies the
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conduction current is greater than the displacement current, whereas at some high
frequencies the reverse is true.
In general, the propagation constant and intrinsic impedance for a poor con-

ductor are given by
v = Vjou(o + jowe) (2-5-14)

_ oS 5.
K o + jwe 2-5-15)

2-5-3 Plane Wave in Lossy Dielectric

All dielectric materials have some conductivity, but the conductivity is very small
(o < we). When the conductivity cannot be neglected, the electric and magnetic
fields in the dielectric are no longer in time phase. This fact can be seen from the
intrinsic impedance of the dielectric as

/ \[ _1/2
g + Jwe B ]— (2-5-16)

The term o /(we) is referred to as the loss tangent and is defined by

tan 6 = — (2-5-17)
we
This relationship is the result of displacement current density leading conduction
current density by 90°, just as the current flowing through a capacitor leads the cur-
rent through a resistor in parallel with it by 90° in an ordinary electric circuit. This
phase relationship is shown in Fig. 2-5-1.

J=(0+jwe)E

J, = oE F.igure .2-5-1 Loss tangent for lossy
dielectric.

If the loss tangent is very small—that is, o/(we) < 1—the propagation con-
stant and intrinsic impedance can be calculated approximately by a binomial expan-
sion. Since

= jwVue/1 - ]— (2-5-18)

then

y = ]w\/_[ 1<—U—>2 4 ] (2-5-19)

1_
]26 8 \we
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€
where €, = —
€o
o 18
x = —_—=
wWEy fGHz

¢ = 90° — 6, is called the pseudo-Brewster angle

Equation (2-5-25) is applicable only for the tangential components of incident
and reflected fields that are in the same directions as shown in Fig. 2-3-4. For total
reflection (I', = 1) we set 6, = 90° in Eq. (2-3-25), and the incident angle is given
by

6; = 8. = arcsin ackd: (2-5-24¢)
M€
The angle specified by Eq. (2-5-24c¢) is called the critical incident angle for total
reflection. A wave incident on the boundary at an angle equal to or greater than the
critical angle will be totally reflected. There is a real critical angle only if
W€ > W€, or, in the nonmagnetic material, if €, > €;. Hence the total reflection
occurs only if the wave propagates from a dense medium into a less dense medium.
This is because the value of sin 6. must be equal to or less than unity.
For vertical polarization, the normal components of electric fields are usually
used to determine the reflection coefficient. Therefore the reflectivity of a lossy
dielectric in vertical polarization is given by

(&, — jx)sin gy — V(e — Jjx) — cos® ¢
(&, — jx)siny + Ve — Jjx) — cos® ¢

Similarly, the vertical transmittance of a lossy dielectric for electric fields as shown
in Eq. (2-3-37) is

I, = (2-5-26)

_ 2V (e, — jx) — cos® ¢
Vie — jx) — cos’ ¢ + (e, — jx) sin ¢

(2-5-27)

v

Horizontal polarization. The reflectivity of a lossy dielectric for electric
fields in horizontal polarization as shown in Eq. (2-3-45) becomes

siny — V(e — jx) — cos? i
F;. = 2-5-28
sin ¢ + Vie — jx) — cos® ¢ ( )

Similarly, the transmittance of a lossy dielectric for electric fields in horizontal po-
larization as shown in Eq. (2-3-46) is expressed as

2 sin ¢
sin ¢ + V(e — jx) — cos? i

The reflections of electromagnetic waves by such lossy dielectric materials as sea-
water, dry sand, and concrete cement are often of concern to many electronics engi-

T, = (2-5-29)
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neers. The conductivities o and relative dielectric constants €, of seawater, dry sand,
and concrete cement are tabulated in Table 2-5-2.

Figures 2-5-2 to 2-5-5 show, respectively, the magnitudes of reflectivity of
seawater, dry sand, and concrete cement for vertical and horizontal polarizations
against the grazing angle ¢ of 0 to 90° at a frequency range of 0.1 to 40 GHz [2].

TABLE 2-5-2 CONDUCTIVITIES AND RELATIVE DIELECTRIC
CONSTANTS OF SEAWATER, DRY SAND, AND CEMENT

Seawater Dry sand Concrete cement
o (mhos/m) 4 2 x 1074 2 x 1073
€ 20 4 3
10 T T T T T T T T T
0.1
0.2
0.3 ]
09F 0.4
0.5
1
0.8 4
2
\ :
4«
0.7 ‘
10
c 20
5 0
g 06 GHz
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0 10 20 30 40 50 60 70 80 90

Grazing angle ¢ in degrees

Figure 2-5-2 Magnitude of the reflectivity in vertical polarization versus
grazing angle for seawater.
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Figure 2-5-3 Magnitude of the reflectivity in horizontal polarization versus
grazing angle for seawater.
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Figure 2-5-4 Magnitude of the reflectivity in vertical and horizontal
polarizations versus grazing angle for dry sand.
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Figure 2-5-5 Magnitude of the reflectivity in vertical and horizontal
polarizations versus grazing angle for concrete cement.

2-6 PLANE-WAVE PROPAGATION IN METALLIC-FILM
COATING ON PLASTIC SUBSTRATE*

In certain engineering applications, it is often desirable to use a metallic-film-coated
glass to attenuate optimum electromagnetic radiation at microwave frequencies and
also to transmit as much light intensity as possible at visible-light frequencies. Gen-
erally the coated metallic film should have a high melting point, a high electrical
conductivity, high adhesion to glass, high resistance to oxidation, and insensitivity
to light and water, as well as the capability of dissipating some power for deicing,
defogging, or maintaining certain temperature levels. The metallic-film coatings on
a plastic substrate are used in such applications as windshields on airplanes or auto-
mobiles, medical equipment in hospitals, and on dome windows of space vehicles,
missiles, and other military devices.

*Copyright © 1975 by the Institute of Electrical and Electronic Engineers, Inc. Light Transmit-
tance and Microwave Attenuation of a Gold-Film Coating on a Plastic Substrate by S. Y. Liao [3];
reprinted from IEEE Trans. on Microwave Theory and Techniques. MTT-23, No. 10, 846—849, October
1975.
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2-6-1 Surface Resistances of Metallic Films

Very thin metallic films have a much higher resistivity than a bulk metal because of
electron scattering from the film surface. If the film thickness is very large compared
to the electron mean-free-path, the resistivity is expected to be nearly the same as
that of a bulk metal. When the film thickness is on the order of the electron mean-
free-path, then the role of electron scattering becomes dominant. Fuchs [4] and
Sondheimer [5] considered the general form of the solution of the Boltzmann equa-
tion for the case of a conducting film and found the film conductivity oy in terms of
the bulk conductivity o, the film thickness ¢, and the electron mean-free-path p:

3

o = —"—’[en("l) + 0.4228] fort < p (2-6-1)
4p t

The surface resistance of conducting films is generally quoted in units of ohms per

square because in the equation for resistance

_ specific resistivity X length _ p¢
thickness X width tw

(2-6-2)

when units of length € and width w are chosen to have equal magnitude (that is, re-
sulting in a square), the resistance R in ohms per square is independent of the di-
mensions of the square and equals

pr_ 1
Rs = 2 = — -6-
: "~ to Q/square (2-6-3)

According to the Fuchs—Sondheimer theory, the surface resistance of a metallic film
is decreased as the thickness of the film is increased.

2-6-2 Optical Constants of Plastic Substrates
and Metallic Films

The optical properties of materials are usually characterized by two constants, the
refractive index n and the extinction index k. The refractive index is defined as the

TABLE 2-6-1 SUBSTRATE MATERIALS

Substrate material Refractive index n
Corning Vycor 1.458
Crystal quartz 1.540
Fused silica 1.458
Plexiglass 1.490
Polycyclohexyl methacrylate 1.504
Polyester glass 1.500
Polymethyl methacrylate 1.491

Zinc crown glass 1.508
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ratio of the phase velocities of light in vacuum and in a medium. The extinction in-
dex is related to the exponential decay of the wave as it passes through a medium.
Most optical plastics are suitable as substrate materials for a dome window and for
metallic-film applications. Table 2-6-1 lists the values of the refractive index n of

several nonabsorbing plastic substrate materials in common use [6].

The measured values of the refractive index n and the extinction index k of thin

metallic-film coatings deposited in a vacuum [6] are tabulated in Table 2-6-2.

TABLE 2-6-2 REFRACTIVE INDEX n AND EXTINCTION INDEX k OF THIN METALLIC

FILMS
Copper film Gold film Sitver film
Wavelength

(A) n k n k n k
2000 1.427 1.215 1.13 1.23
2200 1.32 1.29
2300 1.38 1.31
2400 1.37 1.33
2500 1.39 1.34
2600 1.45 1.35
2700 1.51 1.33
2800 1.57 1.27
2900 1.60 1.17
3000 1.67 0.96
3100 1.54 0.54
3200 1.07 0.32
3300 0.30 0.55
3400 0.16 1.14
3500 0.12 1.35
3600 0.09 1.52
3700 0.06 1.70
3800
4000
4500 0.870 2.200 1.400 1.880
4920
5000 0.880 2.420 0.840 1.840
5460
5500 0.756 2.462 0.331 2.324
6000 0.186 2.980 0.200 2.897
6500 0.142 3.570 0.142 3.374
7000 0.150 4.049 0.131 3.842
7500 0.157 4.463 0.140 4.266
8000 0.170 4.840 0.149 4.654
8500 0.182 5.222 0.157 4.993
9000 0.190 5.569 0.166 5.335
9500 0.197 5.900 0.174 5.691

10,000 0.197 6.272 0.179 6.044

Source: Adapted from the American Institute of Physics Handbook by the American Institute of
Physics. Copyright © 1972 by McGraw-Hill, Inc. (Used with permission of McGraw-Hill Book

Company.)
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2-6-3 Microwave Radiation Attenuation of
Metallic-Film Coating on Plastic Substrate

A conductor of high conductivity and low permeability has low intrinsic impedance.
When a radio wave propagates from a medium of high intrinsic impedance into a
medium of low intrinsic impedance, the reflection coefficient is high. From electro-
magnetic plane wave theory in the far field, high attenuation occurs in a medium
made of material having high conductivity and low permeability. Good conductors,
such as gold, silver, and copper, have high conductivity and are often used as the
material for attenuating electromagnetic energy. Microwave radiation attenuation by
a metallic-film coating on substrate consists of three parts [7]:

Attenuation = A + R+ C dB (2-6-4)

where A = absorption or attenuation loss in decibels inside the metallic-film
coating while the substrate is assumed to be nonabsorbing plastic glass
= reflection loss in decibels from the multiple boundaries of a metallic-film
coating on substrate
= correction term in decibels required to account for multiple internal
reflections when the absorption loss A is much less than 10 dB for
electrically thin film

Figure 2-6-1 shows the absorption and reflection of a metallic-film coating on a
plastic substrate.

Metallic

film
Air — ¢ |e— Air
Substrate

RF energy 4
DI >

R [RED R

Figure 2-6-1 Absorption and reflection
of film coating on plastic substrate.

Absorption loss A. As described in Section 2-5-1, the propagation con-
stant -y for a uniform plane wave in a good conducting material is given in Eq.
(2-5-7) as

y=a+ jB =1+ j)Vafuo, for g7 > we (2-6-5)

If the plastic substrate is assumed to be a nonabsorbing material, the absorption loss
A of the metallic-film coating on a substrate is related only to the thickness ¢ of the
coated film and the attenuation « as shown:

A = 20 logio e* = 20(at) logio e = 20(0.4343)(ct)
= 8.686:'V wfuoy; dB (2-6-6)

where ¢ = thickness of the film coating in meters
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p = permeability of the film in henrys per meter
f = frequency in hertz
oy = conductivity of the coated film in mhos per meter

Since the thickness of the coated film is very thin—for example, 100 angstroms at
most (A = 107'° m)—the absorption loss A is very small and can be ignored.

Reflection loss R. The reflection loss R due to the multiple boundaries of
the substrate glass coated with a metallic film can be analyzed by means of the
energy-transmission theory (see Eq. 2-3-18 in Section 2-3-3), and it is expressed as

2| 1yl 2| | 2| ma|
R=-20log——— — 20 log —=— — 20 log —/——
e + ST + el e + mal
o+ + + 7

8|l s || M

where 7, = intrinsic impedance of the coated metallic film
1, = intrinsic impedance of the glass substrate
M. = intrinsic impedance of air or free space = 377 ()

The intrinsic impedance of a metallic film is given by Eq. (2-5-11) as

== (2-6-8)
Ty

and the intrinsic impedance of a glass substrate is expressed in Eq. (2-5-16) as

Na 377
Mg = = = 194 £} for o, < we (2-6-9)
Y Ve V38 o
where o, = about 10~'? mho/m is the conductivity of the glass substrate
€ = 4.77 X 107" F/m is the permittivity of the glass substrate
€, = 3.78 is the relative permittivity of the glass substrate

~ . pw
=1+ Lot
|| ‘( b 20,

I

Substituting the values of the intrinsic impedances 7, m,, and 7. in Eq. (2-6-7)
yields the reflection loss as [12]

. /Uf
R = 201lo [28.33 L
g uf

Correction term C. For very electrically thin film, the value of the absorp-
tion loss A is much less than 10 dB and the correction term is given by [8]

= 88 + 10 log <-‘J’;f) dB  (2-6-10)

C=2log|1 — p1074/(cos & — j sin 6)| (2-6-11)
— Ma)’
where p = <—> = 1 for n. ® 7
P N+ Na

0 = 3.54tVfuoy

Over the frequency range of 100 MHz to 40 GHz, the angle 6 is much smaller
than 1° so that cos 8 =~ 1 and sin 8 =~ 6. Thus the correction term of Eq. (2-6-11)
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can be simplified to
C = 20 log [3.54t Vfuoy] = —48 + 20 log [t Vfoy] dB (2-6-12)

Finally, the total microwave radiation attenuation by a metallic-film coating on a
glass substrate, defined in Eq. (2-6-4) in the far field, becomes

Attenuation = 40 — 20 log (R,) dB (2-6-13)

It is interesting to note that the microwave radiation attenuation due to the coated
metallic film on a glass substrate in the far field is independent of frequency and is
related only to the surface resistance of the coated metallic film [12].

2-6-4 Light Transmittance of Metallic-Film Coating
on Plastic Substrate

The complex refractive index of an optical material is given by [6] as
N=n-jk (2-6-14)

It is assumed that light in air is normally incident on a thin absorbing film N; of
thickness #; and that it is transmitted through an absorbing substrate of complex re-
fractive index N, and then emerges into air. The incidence and the emergence media
are dielectrics of refractive index no. The reflection loss between the substrate and
the air is small and, for convenience, is taken as zero. Figure 2-6-2 shows light
transmittance, reflection, and absorption through a thin absorbing metallic film and
a plastic substrate.

R LIGHT

ABSORBING FILM

N1= l|1 —|k1

SUBSTRATE

n T Figure 2-6-2 Light transmittance,
o reflection, and absorption through a thin

metallic film coated on plastic substrate.

Using the multireflection and transmission theory, the reflection loss is ex-
pressed by

_ae” + me ™ + ascosv + asin v
bie* + be™ + bscosv + by sin v

where a1 = [(no — m)? + k[(m + m)* + (ki + k)]
a = [(no + m)* + ki]l(ni — n)* + (ki — k2)?]
as = 2{[nd — (n} + kDI(n} + kD) — (n3 + kD)) + dnoki(nika — naky)}
as = 4{[nd — (n? + kDY ks — mk)) — noki[(n} + k3) — (n3 + K)J}

(2-6-15)
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4kt
o =——
Ao
C. .
Ao = j—rls the wavelength in a vacuum
¢ = 3 X 10° m/s is the velocity of light in a vacuum; f is the frequency in
hertz
4mnit
v=—"
Ao

bi = [(no + m)* + kill(m + m)* + (ki + k2)?]

by = [(no — m)* + kill(ny — mo)* + (ki — k)]

by = 2{[”(2) — (n7 + kDI (nf + kD) — (n3 + k%)] — 4noky(nik: — moky)}

bs = M{[nd — (n1 + kDJ(mk: — mk) + noki[(n? + k) — (n3 + kD]}
Transmittance T is given by [6] as

16"0"2(”% + k%)

- bie® + be™ + bacosv + by sinv (2-6-16)
Absorption loss A is given by
A=1—-R-T (2-6-17)
and the total attenuation loss L is
L=A+R (2-6-18)

When the concave surface of a plastic dome is uniformly coated with an elec-
tromagnetic interference shield of metallic film, however, the light is normally inci-
dent on the plastic substrate N,, transmits through the thin metallic film N;, and then
emerges into the air ny. From the electromagnetic theory of luminous transmission
in transparent media, the light transmittance is the same regardless of whether light
is normally incident on the substrate medium N, or on the absorbing film N,. Thus
the total attenuation loss is the same in both cases.

2.6-5 Plane Wave in Gold-Film Coating on Plastic
Glass

Metallic-film coatings on plastic glasses have many engineering applications [9]. A
gold film, for example, is coated on the concave surface of a plastic-glass dome so
that an optimum amount of microwave radiation is attenuated by the gold film while,
at the same time, a sufficient light intensity is transmitted through the gold film.

Surface resistance. At room temperature the properties of bulk gold are

Conductivity: o = 4.10 X 10" mhos/m
Resistivity: p =244 X 1078 Q-m
Electron mean-free-path: p=>510A

It is assumed that the thickness ¢ of the gold film varies from 10 to 100 A. Its surface
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TABLE 2-6-3 SURFACE RESISTANCE OF GOLD FILM

Thickness ¢ Conductivity oy Resistivity ps Surface resistance R;
(A) (mho/m X 107) (Q-m x 1077) (Q/square)
100 1.17 0.86 8.60
90 1.11 0.90 10.00
80 1.03 0.97 12.13
70 0.96 1.04 14.86
60 0.85 1.17 19.50
50 0.77 1.30 26.00
40 0.68 1.48 37.00
30 0.54 1.86 62.00
20 0.42 2.41 120.00
10 0.22 4.48 448.00

resistances are computed by using Egs. (2-6-1) and (2-6-3) and are tabulated in
Table 2-6-3.

Figure 2-6-3 shows surface resistances of gold film in ohms per square against
the thicknesses of gold film from 10 to 100 A. According to the Fuchs—Sondheimer
theory, gold films have a typical surface resistance at about 10 to 30 {}/square for a
thickness of about 90 to 45 A. The surface resistance is decreased as the thickness of
the gold film is increased.

60
50 }—
40 —
N ————-
|
|
20} |
0 |
|
WE=CIIIFTIZZZIITE
: o
|
0 I S N U G N S | L)
20 3 4 50 60 70 80 90 100 Figure 2-6-3 Surface resistance of gold
THICKNESS OF GOLD FILM IN A film versus thickness of gold film.

Microwave radiation attenuation. Substituting the values of the surface
resistances for gold films in Eq. (2-6-13) yields the microwave radiation attenuation
in decibels by the gold-film coating on a plastic glass. Figure 2-6-4 shows graphi-
cally the microwave radiation attenuation versus the surface resistance of the gold-
film coating. For a coated gold film having a surface resistance of 12 {}/square, the



Sec. 2.6 Plane-Wave Propagation in Metallic-Film Coating on Plastic Substrate 49

251
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Figure 2-6-4 Microwave radiation attenuation versus surface resistance of gold
film.

microwave radiation attenuation is about 19 dB. The data agree with Hawthorne’s
conclusion [10,12].

Light transmittance. For the visible-light region, the values of the refrac-
tive index »n and the extinction index & of a gold-film coating on a plastic glass de-
posited in a vacuum are taken from Table 2-6-2. The refractive index no of air or
vacuum is unity. The refractive index n, of the nonabsorbing plastic glass is taken as
1.50. Light transmittance T and light reflection loss R of a gold-film coating on a
plastic glass are computed by using Egs. (2-6-16) and (2-6-15), respectively. Then
from the values of T and R absorption loss A and total attenuation L are calculated.
The results are presented graphically in Fig. 2-6-5. It can be seen that for a light
transmittance of 80% the thickness of the gold-film coating is about 80 A. When the
absorption loss in the substrate material is considered, however, the light transmit-
tance may be a little less than 8§0%.

Optimum condition. The surface resistance of a metallic film decreases as
the thickness of the film coating increases. However, the luminous transmittance is
decreased as the surface resistance of the metallic film is decreased. This relation-
ship for the visible-light region is shown in Fig. 2-6-6.

Figure 2-6-7 illustrates the relationship of light transmittance versus wave-
length for a given surface resistance of gold film. If a power dissipation of
5 Wisquare is allowed for deicing and defogging or keeping warm by the gold-film
coating on a plastic substrate and if the effective area of the coated film is 13 square
inches in a missile, the surface resistance of the coated film must be 12 /square.
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The power dissipation can be expressed as
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Figure 2-6-6 Light transmittance
versus surface resistance of gold film.

= 5 W/square

in which the voltage applied to the film-coating terminations is 28 V. The optimum
condition occurs at 19 dB of microwave radiation attenuation and 80% of light trans-

mittance.
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Figure 2-6-7 Light transmittance versus wavelength with surface resistance R; as
parameter for gold film.

Example 2-6-5: Calculation of a Gold-Film Coating

A gold film of 80 A is coated on a plastic substrate with a refractive index of 1.50. De-
termine:

a. The gold-film surface resistance in ohms per square
b. The microwave attenuation in decibels

¢. The light transmittance T for red light of 0.69 um
d. The light reflection loss R at A = 0.69 um

Solution
a. From Eq. (2-6-1) the gold-film conductivity is

3to p) ]
= —_— - + .
oy ap [ln (t 0.4228

3 x 80 x 1071° x 4.1 x 107 (570) ]
- ) +o0.
4 x 570 X 1071 [ln go) T 04228

1.03 X 107 mhos/m

From Eq. (2-6-3) the gold-film surface resistance is
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1 1

toy 80 X 107 x 1.03 x 10’
= 12.12 Q/squares

R, =

b. From Eq. (2-6-13) the microwave attenuation is

Attenuation = 40 — 20 log (R,)
40 — 20 log (12.12)
18 dB

c. From Fig. 2-6-5 the light transmittance T is estimated to be 75%.
d. From the same figure the light reflection loss R is about 25%.

2-6-6 Plane Wave in Silver-Film or Copper-Film
Coating on Plastic Substrate*

Silver-film or copper-film coating on a plastic substrate has many uses in engineering
[11]. The surface resistance, microwave radiation attenuation, light transmittance,
and optimum condition of both silver-film coating and copper-film coating can be
described in the same way as for fold-film coating.

Surface resistance. At room temperature the properties of bulk silver and
bulk copper are

Silver
Conductivity: o = 6.170 X 107 mhos/m
Resistivity: p=1.620 X 1078 Q-m

Electron mean-free-path: p =570 A

Copper

Conductivity: o = 5.800 X 10’ mhos/m
Resistivity: p=1724 X 1078 Q-m
Electron mean-free-path: p =424

It is assumed that the thickness ¢ of the silver and copper films varies from 10 to
100 A. The surface resistances of silver and copper films are computed by using Egs.
(2-6-1) and (2-6-3) and are tabulated in Tables 2-6-4 and 2-6-5, respectively.

Figure 2-6-8 plots the surface resistances of silver and copper films, respec-
tively, in ohms per square versus the thickness of the silver and copper films from 10
to 100 A.

*Copyright © 1976 by The Institute of Electrical and Electronics Engineers, Inc. RF Shielding
Effectiveness and Light Transmittance of Copper or Silver Coating on Plastic Substrate by S. Y. Liao
[11]; reprinted from [EEE Trans. on Electromagnetic Compatibility, EMC-18, No. 4, 148-153,
November 1976.
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TABLE 2-6-4 SURFACE RESISTANCE R, OF SILVER FILM

Thickness ¢ Conductivity oy Resistivity pr Surface resistance R,
(A) (mho/m X 107) (2-m x 107) (Q/square)
100 1.78 0.571 5.71

90 1.66 0.602 6.69
80 1.55 0.645 8.06
70 1.44 0.695 9.93
60 1.31 0.763 12.72
50 1.16 0.862 17.24
40 0.99 1.010 25.25
30 0.81 1.230 41.00
20 0.61 1.640 82.00
10 0.36 2.760 276.00

TABLE 2.6-5 SURFACE RESISTANCE R; OF COPPER FILM

Thickness ¢ Conductivity oy Resistivity py Surface resistance R,
(A) (mho/m X 107) (Q-m x 1077) (Q/square)
100 1.93 0.52 5.20
90 1.85 0.54 6.00
80 1.73 0.58 7.25
70 1.62 0.62 8.86
60 1.47 0.68 11.33
50 1.33 0.75 15.00
40 1.17 0.86 21.50

30 0.95 1.05 35.00
20 0.73 1.37 68.50
10 0.43 2.31 231.00
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Figure 2-6-8 Surface resistance of silver and copper film versus thickness of film.
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RF radiation attenuation. Substitution of the values of the surface resis-
tances of silver or copper films in Eq. (2-6-13) yields the microwave radiation atten-
uation in decibels by the silver-film or copper-film coating on a plastic substrate. Fig-
ure 2-6-9 shows the microwave radiation attenuation versus the surface resistance of
silver-film or copper-film coating, respectively.
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Microwave attenuation in dB
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Figure 2-6-9 Microwave radiation attenuation versus surface resistance of silver
and copper film.

Light transmittance. Light transmittance 7 and light reflection loss R of
silver-film and copper-film coatings are computed by using Egs. (2-6-16) and
2-6-15), respectively. The values of the refractive index n and the extinction index k
of the silver-film and copper-film coatings deposited in a vacuum for the light-
frequency range are taken from Table 2-6-2. The refractive index ng of air or vac-
uum is unity. The refractive index n, of the nonabsorbing plastic glass is taken as
1.5. From the values of light transmittance T and light reflection loss R, absorption
loss A and total attenuation L are calculated. The results are illustrated in Figs. 2-6-10
and 2-6-11 for silver-film and copper-film coatings, respectively.

Optimum Condition. The light transmittance is increased as the surface re-
sistance is increased. The relationship is illustrated in Fig. 2-6-12 for silver film and
copper film, respectively. The optimum condition occurs at 18 dB of microwave ra-
diation attenuation and 94% of light transmittance with a surface resistance of about
12 Q/square.



100 T
' l Film thickness, ¢ (R) 10
20
Light transmittance, T (per cent) 30
90— 40 7
50
60
80 gg |
90
100
70 ]
60 ]
50 — == ]
e ———— =~3~.
T~o \\\ N
R ] - \\ ~ \
40} RN i
———————— - - - ~oaw N
- —— =~ - s \ N \\\
.= i S NS
30 SO\ -
———— _—_——-— SR RANY
- -~ - ANEN ) W \ 100
-~ \ \\ |
— e ————— - - - AR SAL
- -~ ~ \\ ||
20 [~ \\ \\ \\\ \ —
_______ - ~OoMan
- -~ - Ny \ “\
-~ \ \\\\
SoN \Q“\
N \\§ ?“\\ -2
jof === m=mm= = PN YT EE 2
Light attenuation, L (per cent) ~ \\\\\\§53!?-_=_'.=. =%
ST Tl 10
0 L Film thickness, t (A)
2000 2500 3000 3500 4000

Wavelength, X (A)

Figure 2-6-10 Light transmittance T and light attenuation loss L of silver film
versus wavelength A with film thickness f as parameter.
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Figure 2-6-12 Light transmittance versus surface resistance of silver and copper
films.

Example 2-6-6: Computation of a Copper-Film Coating

A copper film of 60 A is coated on a plastic substrate with a refractive index of 1.50.
Compute:

a. The copper-film surface resistance in ohms per square
b. The microwave attenuation in decibels
¢. The light transmittance T for red light of 0.69 um
d. The light reflection loss R at A = 0.69 um
Solution
a. From Eq. (2-6-1) the copper-film conductivity is

3to p
oy = —g[ln (—t-) + 0.4228]

3% 60 X 1070 X 5.8 X 107[. (420
= In (=) + 0.
4 X 420 x 1010 [" (60) 0 4228]

1.47 X 107 mhos/m

From Eq. (2-6-3) the copper-film surface resistance is
R = I 1
T top 60 X 1070 X 1.47 x 107

= 11.34 Q/square

b. From Eq. (2-6-13) the microwave attenuation is

Attenuation = 40 — 20 log (R,)
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40 — 20 log (11.34)
19 dB

¢. The light transmittance T is estimated from Fig. 2-6-11 to be 82%
d. From the same figure the light reflection loss R is about 18%.
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PROBLEMS

2-1.

2-2,

2-3

24,

2-6.

2-8.

In a certain homogeneous medium the group velocity as measured by the propagation
time of a pulse is found to be proportional to the square root of the frequency
(v, = VAw where A is a constant) over a particular frequency range. It is assumed the
medium is a nonmagnetic insulator.

a. Determine the relationship between the phase and group velocities.

b. Derive an expression for the relative dielectric constant of this medium.

Show that 8/3z = B, and 8/dt = jw for a sinusoidal wave propagating in the z di-
rection.

The electric field of a plane wave propagating in free space is given in complex nota-
tion by

E = 1()‘431""”*20"2)[.], + 10‘4€j(wl+ﬂ/2+20"2)Uy

Where U, and U, are unit vectors in the x and y directions of a right-hand coordinate

system.

a. In which direction is the wave propagating?

b. Find the frequency of the propagating signal.

¢. Determine the type of wave polarization (linear, circular, or elliptical).

d. Express the magnetic field intensity H of the propagating wave.

e. Calculate the average power flow per square meter in the direction of the propaga-
tion.

Determine the permittivity of a slab of dielectric material that will reflect 20% of the

energy in a plane wave. The wave is striking normally to and propagating through the

slab. Neglect the reflections from the back face of the slab.

. The reflection and refraction of microwave propagating in the ionosphere are deter-

mined by the electron density in the ionosphere. If the electron density is assumed to
be 10" electrons per cubic meter, detemine the critical frequency for vertical incidence
so that the signal wave will be reflected back to the earth.

The conductivity o of copper is 5.8 X 10’ mhos/m and its relative permeability is
unity. Calculate the magnitudes of reflectivity of copper for vertical and horizontal po-
larizations against the grazing angle ¢ of 0 to 90° at a frequency range of 1 to 40 GHz.
The increment of the angle ¢ is 10° each step and the increment of the frequency is
10 GHz each step.

At the Brewster angle there is no reflected wave when the incident wave is vertically
polarized. If the incident wave is not entirely verticaily polarized there will be some
reflection but the reflected wave will be entirely of horizontal polarization. Verify Eq.
(2-5-24B) for the Brewster angle in terms of the relative dielectrics.

Determine the pseudo-Brewster angle ¢ in terms of v;, vz, 7, and 7 for a good con-
ductor. [Hint: Start from Eq. (2-5-13b).]
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2-9.

2-10.

2-12.

2-13.

2-14.

2-15.

2-16.
2-17.

2-18.

2-20.

2-21.

2-22.

Calculate the pseudo-Brewster angles for seawater, dry sand, concrete cement, and dry
ground.

Determine the pseudo-Brewster angle ¢ in terms of €, and x for a lossy dielectric.
[Hint: Start from Eq. (2-5-26).]

. Bulk gold has a conductivity of 4.1 X 107 mhos/m, a resistivity of 2.44 X 1078 Q-m,

and an electron mean-free-path of 570 A. Calculate the surface conductivity, surface
resistivity, and surface resistance of gold film for thicknesses of 10 to 100 A with an
increment of 10 A for each step.

Silver has a conductivity of 0.617 X 10% mhos/m, a resistivity of 1.620 X 1078 Q-m,
and an electron mean-free-path of 570 A. Repeat Problem 2-11 for silver film.
Seawater has a conductivity of 4 mhos/m and a relative dielectric constant of 20 at a
frequency of 4 GHz. Compute:

a. The intrinsic impedance

b. The propagation constant

¢. The phase velocity

Repeat Problem 2-13 for dry sand (o = 2 X 107* mho/m and €, = 4) and copper
(o = 5.8 X 107 mhos/m).

A uniform plane wave is incident normally from air onto the surface of seawater. The
electric intensity of the incident wave is 100 X 107? V/m at a frequency of 5 GHz in
the vertical polarization. Calculate:

a. The electric intensity of the reflected wave

b. The electric intensity of the transmitted wave

Repeat Problem 2-15 for an angle of incidence of 30°.

Dry ground has a conductivity of 5 X 10™* mhos/m and a relative dielectric constant
of 10 at a frequency of 500 MHz. Compute:

a. The intrinsic impedance

b. The propagation constant

c¢. The phase velocity

Copper has a conductivity of 5.8 X 107 mhos/m and is considered an ideal material for
shielding. A shield is made of copper with a thickness of 1 mm. If a uniform plane
wave is normally incident upon the copper shield, compute the absorption loss in deci-
bels by the copper at f = MHz.

. A radar transmitter has an output power of 100 kW average. Calculate the power den-

sity in dBW/m? at a range of 3000 m and the free-space attenuation in decibels at
f = 10 GHz.

Write a compiete FORTRAN program to compute the magnitudes of reflectivity in ver-
tical polarization against a grazing angle of seawater. The frequency varies from 0.1 to
40 GHz with an increment of 0.1 GHz between 0.1 to 1 GHz, 1 GHz between 1 to 10
GHz, and 5 GHz between 10 to 40 GHz. Use F10.5 format for numerical outputs and
Hollerith format for character outputs. Print the outputs in three columns such as fre-
quency (GHz), grazing angle (degrees), and gamma (vertical reflectivity).

Write a complete FORTRAN program to compute the magnitudes of reflectivity in
horizontal polarization against a grazing angle for seawater. (Refer to Problem 2-20 for
specifications. )

Write a complete FORTRAN program to compute the light transmittance and light
reflection of a gold-film coating on a nonabsorbing plastic glass for thicknesses of 10 to
100 A with an increment of 10 A each step. The wavelength varies from 2000 to
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2-23.

2-24.

2-25.

2-26.
2-27.
2-28.
2-29.
2-30.
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10,000 A with an increment of 500 A each step. The values of the refractive index n
and the extinction index k of a gold-film coating on a nonabsorbing plastic glass de-
posited in a vacuum are listed in Table 2-6-2. The refractive index n of the nonab-
sorbing plastic glass is 1.5. Use F10.5 format for numerical outputs, Hollerith format
for character outputs, and Data statements to read in the input values.

Write a complete FORTRAN program to compute the light transmittance and light
reflection for an aluminum-film coating on a nonabsorbing plastic substrate for thick-
nesses of 10 to 100 A and print out the results in percentages. Use F10.5 format for
numerical outputs, Hollerith format for character outputs, and Data statements to read
in the input values. Print the outputs in column form with proper head-letters and
units. The refractive index n of the nonabsorbing plastic glass is 1.50. The refractive
index n and extinction index k for aluminum film are tabulated in Table P2-23. (Refer
to Problem 2-22 for specifications.)

Repeat Problem 2-22 for a silver-film coating on a nonabsorbing plastic glass for the
wavelengths from 2000 to 3700 A with an increment of 100 A each step. (Refer to
Table 2-6-2 for the values of n and k.)

TABLE P2-23

Wavelength Refractive Extinction Wavelength Refractive Extinction
(A) index n index k (A) index n index k
0000 0.00 0.00 0000 0.00 0.00
2000 0.11 2.20 4500 0.51 5.00
2200 0.13 2.40 5000 0.64 5.50
2400 0.16 2.54 5500 0.82 5.99
2600 0.19 2.85 6000 1.00 6.50
2800 0.22 3.13 6500 1.30 7.11
3000 0.25 3.33 7000 1.55 7.00
3200 0.28 3.56 7500 1.80 7.12
3400 0.31 3.80 8000 1.99 7.05
3600 0.34 4.01 8500 2.08 7.15
3800 0.37 4.25 9000 1.96 7.70
4000 0.40 4.45 9500 1.75 8.50

Repeat Problem 2-22 for a copper-film coating on a nonabsorbing plastic glass for the
wavelengths from 4500 to 10,000 A with an increment of 500 A each step.

Repeat Problems 2-20 and 2-21 for dry sand.

Repeat Problems 2-20 and 2-21 for concrete cement.

Repeat Problems 2-20 and 2-21 for dry ground.

Start from Egs. (2-3-25) and (2-3-36) and verify Eq. (2-5-24a).

Derive Eq. (2-5-25) from Eq. (2-5-24a) by assuming the loss tangent to be much less
than unity.



Chapter 3

Microwave Transmission
Lines

3-0 INTRODUCTION

Conventional two-conductor transmission lines are commonly used for transmitting
microwave energy. If a line is properly matched to its characteristic impedance at
each terminal, its efficiency can reach a maximum.

In ordinary circuit theory it is assumed that all impedance elements are lumped
constants. This is not true for a long transmission line over a wide range of frequen-
cies. Frequencies of operation are so high that inductances of short lengths of con-
ductors and capacitances between short conductors and their surroundings cannot be
neglected. These inductances and capacitances are distributed along the length of a
conductor, and their effects combine at each point of the conductor. Since the wave-
length is short in comparison to the physical length of the line, distributed parame-
ters cannot be represented accurately by means of a lumped-parameter equivalent
circuit. Thus microwave transmission lines can be analyzed in terms of voltage, cur-
rent, and impedance only by the distributed-circuit theory. If the spacing between
the lines is smaller than the wavelength of the transmitted signal, the transmission
line must be analyzed as a waveguide.

3-1 TRANSMISSION-LINE EQUATIONS AND SOLUTIONS
3-1-1 Transmission-Line Equations

A transmission line can be analyzed either by the solution of Maxwell’s field equa-
tions or by the methods of distributed-circuit theory. The solution of Maxwell’s
equations involves three space variables in addition to the time variable. The
distributed-circuit method, however, involves only one space variable in addition to

61
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the time variable. In this section the latter method is used to analyze a transmission
line in terms of the voltage, current, impedance, and power along the line.

Based on uniformly distributed-circuit theory, the schematic circuit of a con-
ventional two-conductor transmission line with constant parameters R, L, G, and C
is shown in Fig. 3-1-1. The parameters are expressed in their respective names per
unit length, and the wave propagation is assumed in the positive z direction.

RAz LAz A R Az LAz

£

V(z, ). G Az C Az

Generator \ I V(z+Az,f)/

— f——— a2

Figure 3-1-1 Elementary section of a transmission line.

o

i
AAAA
Yy Yy
4

(3N
L$

ic ——
‘ i(z + Az, t)

i(z, t)

Load

J‘l

By Kirchhoft’s voltage law, the summation of the voltage drops around the
central loop is given by
dv(z, t)
VA DA
dz ?

Rearranging this equation, dividing it by Az, and then omitting the argument (z, ¢),
which is understood, we obtain

v(z, t) = i(z, HR Az + LAZQ%L) + vz, 1) + (3-1-1)

Jv or
—— =Ri + L— 3-1-2
0z : Lat ( )

Using Kirchhoff’s current law, the summation of the currents at point B in Fig.
3-1-1 can be expressed as
dv(z + Az, 1)

v(z + Az, 1)G Az + CAZ——at—— +i(z+ Az, 1)

i(z, 1)

[u(z, 1)+ ___avgzz, f) AZ]G Az (3-1.3)
+C Azg[v(z, 1) + M AZ] + i 1) + 9i(z, 1) Az
ot Jz —62

By rearranging the preceding equation, dividing it by Az, omitting (z, ¢), and as-
suming Az equal to zero, we have

di av

— = + C—= -1-
s Gv+ C ™ (3-1-4)
Then by differentiating Eq. (3-1-2) with respect to z and Eq. (3-1-4) with respect to
t and combining the results, the final transmission-line equation in voltage form is
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found to be , ,

a°v av ‘v

— = 5 + + LG)— + LC— 3-1-5

a2~ ROUT (RC Vot ot (3-1-5)
Also, by differentiating Eq. (3-1-2) with respect to 7 and Eq. (3-1-4) with respect to
z and combining the results, the final transmission-line equation in current form is

0%i i 0%

— =RGi + (RC + LG)— + LC— 3-1-6

52~ ROL+ (RC + LG) o, ar (3-1-6)
All these transmission-line equations are applicable to the general transient solution.
The voltage and current on the line are the functions of both position z and time ¢.
The instantaneous line voltage and current can be expressed as

v(z, t) = Re V (z)e™ (3-1-7)
i(z, 1) = Re I(z)e/ (3-1-8)
where Re stands for “real part of.” The factors V(z) aand I(z) are complex quantities
of the sinusoidal functions of position z on the line and are known as phasors. The

phasors give the magnitudes and phases of the sinusoidal function at each position of
z, and they can be expressed as

V(z) = Vie” + V_e” (3-1-9)
IZ) =Le ™+ 1. e” (3-1-10)
=a+jB (propagation constant) (3-1-11)

where V., and I, indicate complex amplitudes in the positive z direction, V- and I_
signify complex amplitudes in the negative z direction, a is the attenuation constant
in nepers per unit length, and B is the phase constant in radians per unit length.

If we substitute jew for d/0t in Egs. (3-1-2), (3-1-4), (3-1-5), and (3-1-6) and
divide each equation by ¢/, the transmission-line equations in phasor form of the
frequency domain become

dv _

i —ZI (3-1-12)
a_ _yy (3-1-13)
dz
d*v 5
— = y’V 3-1-14
dzz y ( )
d’1 5
— =7y’1 3-1-1
27 (3-1-15)
in which the following substitutions have been made:
Z =R+ joL (ohms per unit length) (3-1-16)
Y =G + joC (mhos per unit length) (3-1-17)

y=VZY =a + jB (propagation constant) (3-1-18)
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For a lossless line, R = G = 0, and the transmission-line equations are expressed as

%—j— = — joLI (3-1-19)
EI = —jwCV (3-1-20)
‘525 = —w’LCV (3-1-21)
j—;l = —w?LCI (3-1-22)

It is interesting to note that Eqs. (3-1-14) and (3-1-15) for a transmission line are
similar to equations of the electric and magnetic waves, respectively. The only dif-
ference is that the transmission-line equations are one-dimensional.

3-1-2 Solutions of Transmission-Line Equations

The one possible solution for Eq. (3-1-14) is

V=V,e "+ V_e¥ = V,e @ + V_eg¥e (3-1-23)
The factors V. and V_ represents complex quantities. The term involving e /#
shows a wave traveling in the positive z direction, and the term with the factor ¢/ is
a wave going in the negative z direction. The quantity Bz is called the electrical

length of the line and is measured in radians.
Similarly, the one possible solution for Eq. (3-1-15) is

I =YoVie ™ — V_e”) = Yo(Vie e # — V_e*e/?) (3-1-24)

In Eq. (3-1-24) the characteristic impedance of the line is defined as

_1_\[2_ R+ joL _ . .
Zo=1.= \y = Vgiee = Ro = i% (341-25)

The magnitude of both voltage and current waves on the line is shown in Fig. 3-1-2.

A i1,
e—oz e—al
eaz
eaz
IV_|| |
0 0
(a) Voltage wave (b) Current wave

Figure 3-1-2 Magnitude of voltage and current traveling waves.
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At microwave frequencies it can be seen that
R <wlL and G < C (3-1-26)
By using the binomial expansion, the propagation constant can be expressed as
y = V(R + joL)(G + jwC)

vy £+ )

JjwC
(R I
~Jw\/_[1+ (JfL ]fcﬂ

1 \ﬁ \[ '
== + +
R L+ G c joVLC

Therefore the attenuation and phase constants are, respectively, given by

o« = %(R\/% + G\/%) (3-1-28)
B = wVLC (3-1-29)

Similarly, the characteristic impedance is found to be

-1/2
B S
JjoL joC

{
£<~->< ) o
o

From Eq. (3-1-29) the phase velocity is

® 1
Up = — = —— (3-1-31)
" B VLC
The product of LC is independent of the size and separation of the conductors and
depends only on the permeability w and permittivity of € of the insulating medium.
If a lossless transmission line used for microwave frequencies has an air dielectric
and contains no ferromagnetic materials, free-space parameters can be assumed.
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Thus the numerical value of 1/VLC for air-insulated conductors is approximately
equal to the velocity of light in vacuum. That is,

= - =3 x 10 s (3-1-32)

1
R
TVLC Ve

When the dielectric of a lossy microwave transmission line is not air, the phase ve-
locity is smaller than the velocity of light in vacuum and is given by

1 c
v = = (3-1-33)
V e V €
In general, the relative phase velocity factory can be defined as
tual ph locit
Velocity factor = ac.ua p ?Se v.e Ty
velocity of light in vacuum
. 1
v, =2 = (3-1-34)

¢ V i€

A low-loss transmission line filled only with dielectric medium, such as a coaxial
line with solid dielectric between conductors, has a velocity factor on the order of
about 0.65.

Example 3-1-1: Line Characteristic Inpedance and Propagation Constant

A transmission line has the following parameters:
R=2Q/m G = 0.5 mmho/m  f=1GHz
L = 8 nH/m C = 0.23 pF
Calculate: (a) the characteristic impedance; (b) the propagation constant.

Solution
a. From Eq. (3-1-25) the line characteristic impedance is

Z=\/;+ij—\/ 2+ j2m X 10° X 8 X 10~
o G + jwC 0.5 x 107 + j2m x 10° X 0.23 x 10~
[ 50.31/87.72°
= = 181.39/8.40° = 179.44 + j26.
15.29 X 10-%/70.91° 39/8.40° = 179 72650

b. From Eq. (3-1-18) the propagation constant is
y = V(R + joL)(G + joC) = V(50.31/87.72°)(15.29 X 107/70.91°)
= V769.24 x 107%/158.63°
= 0.2774/79.31° = 0.051 + j0.273
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3-2 REFLECTION COEFFICIENT AND TRANSMISSION
COEFFICIENT

3-2-1 Reflection Coefficient

In the analysis of the solutions of transmission-line equations in Section 3-1, the
traveling wave along the line contains two components: one traveling in the positive
z direction and the other traveling the negative z direction. If the load impedance is
equal to the line characteristic impedance, however, the reflected traveling wave
does not exist.

Figure 3-2-1 shows a transmission line terminated in an impedance Z,. It is
usually more convenient to start solving the transmission-line problem from the re-
ceiving rather than the sending end, since the voltage-to-current relationship at the
load point is fixed by the load impedance. The incident voltage and current waves
traveling along the transmission line are given by

V=V,e” + V_e” (3-2-1)
I=Le”+ 1™ (3-2-2)
in which the current wave can be expressed in terms of the voltage by
— V+ —yz __ V_ vz
1= Z e Z e (3-2-3)
If the line has a length of €, the voltage and current at the receiving end become
Ve= V.e" + V_e* (3-2-4)
I = —1~(V+e‘“’e - V_e™) (3-2-5)
zZ,
The ratio of the voltage to the current at the receiving end is the load impedance.
That is,
Ve Vie" + V. e
Ze = I ZOV+e‘7‘ — V_e*t (3-2-6)
Z! I,—> -
r—'\AMr—C \ 1 -0
v, — > V, zZ V., z
£ CN) Sending o Receiving [} ¢
end end
od 4 o
S ' -0
o——»: d «——0

Figure 3-2-1 Transmission line terminated in a load impedance.
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The reflection coefficient, which is designated by I' (gamma), is defined as

reflected voltage or current
incident voltage or current

Vref _ —Iref
Vinc IinC

If Eq. (3-2-6) is solved for the ratio of the reflected voltage at the receiving end,
which is V_e?, to the incident voltage at the receiving end, which is V. e, the re-
sult is the reflection coefficient at the receiving end:
Voe  Ze—-1Z
== 2 (3-2-8)
V.e™ Ze + 7y
If the load impedance and/or the characteristic impedance are complex quantities, as
is usually the case, the reflection coefficient is generally a complex quantity that can
be expressed as

Reflection coefficient =

r

i

(3-2-7)

Le

T¢ = |Teler® (3-2-9)

where | T¢| is the magnitude and never greater than unity—that is, |T'¢| < 1. Note
that @, is the phase angle between the incident and reflected voltages at the receiving
end. It is usually called the phase angle of the reflection coefficient.

The general solution of the reflection coefficient at any point on the line, then,
corresponds to the incident and reflected waves at that point, each attenuated in the
direction of its own progress along the line. The generalized reflection coefficient is
defined as

V_oe”
Vie™

r

(3-2-10)

From Fig. 3-2-1 let z = £ — d. Then the reflection coefficient at some point located
a distance d from the receiving end is

Vo ev(l—d) V. et

Fd = =
V+ e_Y(e_d) V+e_w

e = Ty (3-2-11)

Next, the reflection coefficient at that point can be expressed in terms of the
reflection coefficient at the receiving end as

Fd —_ Fee—Zade—jZﬂd — |F€|e—2adej(eg-23d) (3_2_12)

This is a very useful equation for determining the reflection coefficient at any point
along the line. For a lossy line, both the magnitude and phase of the reflection
coefficient are changing in an inward-spiral way as shown in Fig. 3-2-2. For a loss-
less line, &« = 0, the magnitude of the reflection coefficient remains constant, and
only the phase of I' is changing circularly toward the generator with an angle of
—2Bd as shown in Fig. 3-2-3.

It is evident that T'¢ will be zero and there will be no reflection from the re-
ceiving end when the terminating impedance is equal to the characteristic impedance
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Figure 3-2-2 Reflection coefficient for
lossy line.

Figure 3-2-3 Reflection coefficient for
lossless line.

of the line. Thus a terminating impedance that differs from the characteristic
impedance will create a reflected wave traveling toward the source from the termina-
tion. The reflection, upon reaching the sending end, will itself be reflected if the
source impedance is different from the line characteristic impedance at the send-
ing end.

3-2-2 Transmission Coefficient

A transmission line terminated in its characteristic impedance Zo is called a properly
terminated line. Otherwise it is called an improperly terminated line. As described
earlier, there is a reflection coefficient I' at any point along an improperly termi-
nated line. According to the principle of conservation of energy, the incident power
minus the reflected power must be equal to the power transmitted to the load. This
can be expressed as

Z,

— T 3-2-13

= (3-2-13)
Equation (3-2-13) will be verified later. The letter T represents the transmission
coefficient, which is defined as

I -Ti=



70 Microwave Transmission Lines Chap. 3

transmitted voltage or current _ Vi

T —
incident voltage or current Vinc

(i

L.
- (3-2-14)

Figure 3-2-4 shows the transmission of power along a transmission line where Pi, is
the incident power, P.r the reflected power, and P, the transmitted power.

ZO > s Py —
-~ -— P
Prs Pref tr
Ve Z, Load
[~ ¢ —
o Z

Figure 3-2-4 Power transmission on a line.

Let the traveling waves at the receiving end be

V,e ™ + V_e" = Vet (3-2-15)
V. V- Ve

—Tovt vt = T,y .
Zoe Zoe Zee (3-2-16)

Multiplication of Eq. (3-2-16) by Z, and substitution of the result in Eq. (3-2-15)
yield

Ve Zi-1Z

T, = = -
¢ V+3A‘y€ Ze + Z() (3 2 17)
which, in turn, on substitution back into Eq. (3-2-15), results in
_ Vtr _ 2Z€
T= V. Ze+ Z (3-2-18)

The power carried by the two waves in the side of the incident and reflected waves is
_ (V+€-ae)2 B (V_eae)z

PianPinc_Pre_ 4=
£ 1z 7 (3-2-19)
The power carried to the load by the transmitted waves is
(Vlre—at’)z
Py=—- -2-
" . (3-2-20)
By setting Pi,, = P, and using Eqgs. (3-2-17) and (3-2-18), we have
V/
T =2(1-T}% (3-2-21)
Z,

This relation verifies the previous statement that the transmitted power is equal to
the difference of the incident power and reflected power.
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Example 3-2-1: Reflection Coefficient and Transmission Coefficient

A certain transmission line has a characteristic impedance of 75 + j0.01 () and is ter-
minated in a load impedance of 70 + ;50 (). Compute (a) the reflection coefficient;
(b) the transmission coefficient. Verify: (c) the relationship shown in Eq. (3-2-21);
(d) the transmission coefficient equals thc algebraic sum of 1 plus the reflection
coefficient as shown in Eq. (2-3-18).

Solution

a. From Eq. (3-2-17) the reflection coefficient is
Ze—Zo 70+ j50 — (75 + j0.01)

U= 72, =70+ j50+ (75 + jo.0)
50.24/95.71°
= 33/76.68° = 0.08 + j0.32
= 153.38/19.0°  ° [76.68° 84
b. From Eq. (3-2-18) the transmission coefficient is
T = 27 2(70 + j50)
Ze+ Zo 70+ j50 + (75 + j0.01)
172.05/35.54°
= 12/16.51° = 1.08 + jO.
153.38/19.08% [16.51° = 1.08 + j0.32
C.
= (1.12/16.51°7 = 1.25/33.02°
Z 70 + 50
L1 -1 = — (0.33)/76.68°)]
7, T =57 001[1 (0.33)/76.68°)]
_ 86/35.54°
75% x 1.10/=2.6° = 1.25/33°

Thus Eq. (3-2-21) is verified.
d. From Eq. (2-3-18) we obtain

T=108+,;032=1+008+,032=1+T

3-3 STANDING WAVE AND STANDING-WAVE RATIO

3-3-1 Standing Wave

The general solutions of the transmission-line equation consist of two waves traveling
in opposite directions with unequal amplitude as shown in Egs. (3-1-23) and

(3-1-24). Equation (3-1-23) can be written
V = Vie e P + V_eel
= V.e *[cos (Bz) — j sin (Bz)] + V_e*[cos (Bz) + j sin (Bz)]
= (Vie™@ + V_e*) cos (Bz) — j(Vie ™ — V_e*) sin (Bz2)
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With no loss in generality it can be assumed that V,e™* and V_e® are real. Then
the voltage-wave equation can be expressed as

V, = Voe /® (3-3-2)
This is called the equation of the voltage standing wave, where
Vo = [(Vie @ + V_e*)? cos? (Bz) + (Vie™ — V_e )% sin? (Bz)]'/? (3-3-3)
which is called the standing-wave pattern of the voltage wave or the amplitude of

the standing wave, and

— tan (Bz) (3-3-4)

‘]+ e — V_eaz )
Vie® + V_e

¢ = arctan <

which is called the phase pattern of the standing wave. The maximum and minimum
values of Eq. (3-3-3) can be found as usual by differentiating the equation with re-
spect to Bz and equating the result to zero. By doing so and substituting the proper
values of Bz in the equation, we find that
1. The maximum amplitude is
Vo = Vie @ + Voe® = V,e7(1 + |T')) (3-3-5)

and this occurs at Bz = nw, where n = 0, =1, 2, . . ..
2. The minimum amplitude is

Vain = Vie ™ — Voe® = V.e™(1 — |T|) (3-3-6)

and this occurs at Bz = (2n — 1)mr/2, where n = 0, =1, *2, . . ..
3. The distance between any two successive maxima or minima is one-half wave-
length, since

Bz = nmw Zz=-—=———=pn— n=0, £1, £2,...)

Then
z == (3-3-7)

It is evident that there are no zeros in the minimum. Similarly,
Lo = Lee™ + Le = Le(1 + |T')) (3-3-8)
Lin = Le™ — Ie* = Le (1 — |T) (3-3-9)

The standing-wave patterns of two oppositely traveling waves with unequal amplitude
in lossy or lossless line are shown in Figs. 3-3-1 and 3-3-2.
A further study of Eq. (3-3-3) reveals that

1. When V. # 0 and V_ = 0, the standing-wave pattern becomes
Vo=V,e™® (3-3-10)
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Figure 3-3-1 Standing-wave pattern in a lossy line.
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Figure 3-3-2 Voltage standing-wave
0 2 pattern in a lossless line.

2. When V, = 0 and V_ # 0, the standing-wave pattern becomes
Vo= V_e* (3-3-11)

3. When the positive wave and the negative wave have equal amplitudes (that is,
| V.e™*| = | V_e*|) or the magnitude of the reflection coefficient is unity, the
standing-wave pattern with a zero phase is given by

V, = 2V.e ™ cos (Bz) (3-3-12)

which is called a pure standing wave.

Similarly, the equation of a pure standing wave for the current is
L = —j2YoVie ™ sin (Bz) (3-3-13)

Equations (3-3-12) and (3-3-13) show that the voltage and current standing waves
are 90° out of phase along the line. The points of zero current are called the current
nodes. The voltage nodes and current nodes are interlaced a quarter wavelength

apart.
The voltage and current may be expressed as real functions of time and space:

v, = (z, 1) = Re[V,(2)e™'] = 2V.e ™ cos (Bz) cos (wr) (3-3-14)
i. = (z, 1) = Re[l(z)e”'] = 2Y, Vie * sin (Bz) sin (wt) (3-3-15)
The amplitudes of Egs. (3-3-14) and (3-3-15) vary sinusoidally with time; the
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voltage is a maximum at the instant when the current is zero and vice versa. Figure
3-3-3 shows the pure-standing-wave patterns of the phasor of Egs. (3-3-12) and
(3-3-13) for an open-terminal line.

1
—— Y v
7= ~ 7
A / \/\/ d \f
/ \ / \ / N\
/ \ 7/ \ / N
/ \ / \W) - .
Y. Y _ - Figure 3-3-3 Pure standing waves of
0<—22— te—— /22— z voltage and current.

3-3-2 Standing-Wave Ratio

Standing waves result from the simultaneous presence of waves traveling in opposite
directions on a transmission line. The ratio of the maximum of the standing-wave
pattern to the minimum is defined as the standing-wave ratio, designated by p. That
is,

maximum voltage or current
minimum voltage or current

p = |Vmax| — |Imax|
leinl |Imin|

The standing-wave ratio results from the fact that the two traveling-wave components
of Eq. (3-3-1) add in phase at some points and subtract at other points. The distance
between two successive maxima or minima is A/2. The standing-wave ratio of a pure
traveling wave is unity and that of a pure standing wave is infinite. It should be noted
that since the standing-wave ratios of voltage and current are identical, no distinc-
tions are made between VSWR and ISWR.

When the standing-wave ratio is unity, there is no reflected wave and the line is
called a flat line. The standing-wave ratio cannot be defined on a lossy line because
the standing-wave pattern changes markedly from one position to another. On a low-
loss line the ratio remains fairly constant, and it may be defined for some region. For
a lossless line, the ratio stays the same throughout the line.

Since the reflected wave is defined as the product of an incident wave and its
reflection coefficient, the standing-wave ratio p is related to the reflection coefficient
I’ by

Standing-wave ratio =

(3-3-16)

_L+]r]

p= 1—_—“_,—‘ (3-3-17)
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and vice versa

p—1
I'=H—- -3-
Tl = (3-3-18)
This relation is very useful for determining the reflection coefficient from the
standing-wave ratio, which is usually found from the Smith chart. The curve in Fig.
3-3-4 shows the relationship between reflection coefficient |I"| and standing-wave
ratio p.

0.9 I T
08| —

0.6 -
0.5 -]
04 —
0341 -
0.2 -]
0.1 —

0.0 1 L 1 I L 1 1 ]
1 2 3 4 5 6 7 8 9 10

VSWR o

T

T

Reflection coefficient ||

!

Figure 3-3-4 SWR versus reflection coefficient.

As a result of Eq. (3-3-17), since |I'| = 1, the standing-wave ratio is a posi-
tive real number and never less than unity, p = 1. From Eq. (3-3-18) the magni-
tude of the reflection coefficient is never greater than unity.

Example 3-3-1: Standing-Wave Ratio

A transmission line has a characteristic impedance of S0 + j0.01 € and is terminated
in a load impedance of 73 ~ j42.5 Q. Calculate: (a) the reflection coefficient; (b) the
standing-wave ratio.

Solution

a. From Eq. (3-2-8) the reflection coefficient is

Ze—Zo 73— j42.5 - (50 + j0.01)

P =272 " B3 jas+ 0+ joon O[T

b. From Eq. (3-3-17) the standing-wave ratio is

_ 1+ _1+0377 _
PoT=Ir] " 1-0377

2.21
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3-4 LINE IMPEDANCE AND ADMITTANCE
3-4-1 Line Impedance

The line impedance of a transmission line is the complex ratio of the voltage phasor
at any point to the current phasor at that point. It is defined as

_ V@)
Z=15 (3-4-1)

Figure 3-4-1 shows a diagram for a transmission line.

Sending end Receiving end

—_—  — e e

|

v, Z, -V z,

l z
0
oO—> 2 d «———o0

.,N—l

Figure 3-4-1 Diagram of a transmission line showing notations.

In general, the voltage or current along a line is the sum of the respective inci-
dent wave and reflected wave—that is,

V = Vi + Vs = Vie ™ 4+ V_e™ (3-4-2)
I= Iinc + Iref = YO(V+e_7Z - V—eyz) (3—4-3)
At the sending end z = 0; then Egs. (3-4-2) and (3-4-3) become
LZ, =V, + V_ (3-4-4)
LZ, =V, - V. (3-4-5)
By solving these two equations for V., and V_, we obtain
I
V., = E(ZS + Z) (3-4-6)
I,
V.= E(Zx — Zo) (3-4-7)
Substitution of V. and V_ in Egs. (3-4-2) and (3-4-3) yields
V= %[(ZS + Zoe ™ + (Z — Zo)e™] (3-4-8)
1= (Zs + Zo)e™ — (Zs — ZLo)e™] (3-4-9)

2Z,
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Then the line impedance at any point z from the sending end in terms of Z; and Z, is
expressed as

(Z, + Zo)e ™ + (Z; — Zo)e™
(Zs + ZO)e_yz - (Z: - Zo)eyz
At z = { the line impedance at the receiving end in terms of Z, and Z, is given by

(Zs + Zo)e ™ + (Z, — Zo)e*
(Z.r + ZO)e_% - (Zs - ZO)eye

Alternatively, the line impedance can be expressed in terms of Z, and Zo. At
z = €, V., = I Z;; then

Z=Z0

(3-4-10)

Z, =17 (3-4-11)

IZe = Vie " + V e (3-4-12)
I(Zo = V+€77€ - V_e“") (3-4-13)
Solving these two equations for V. and V_, we have
I
Vi = 2 (Ze + Zoje™ (3-4-14)
I, e
V. = E(Z( — Zo)e™” (3-4-15)

Then substituting these results in Egs. (3-4-2) and (3-4-3) and letting z = € — 4,
we obtain

I

V= g[(ze + ZoYe™ + (Ze — Zo)e ] (3-4-16)
1

= [(Ze + Zo)e™ — (Ze — Zo)e ] (3-4-17)
27,

Next, the line impedance at any point from the receiving end in terms of Z, and Z,
is expressed as

(Ze + Zo)e"’ + (Ze - Zo)e“’d
(Ze + Zo)eyd — (Ze — Zo)e_“’d

The line impedance at the sending end can also be found from Eq. (3-4-18) by let-
tingd = ¢€:

Z = Zo (3-4-18)

(Ze + Zo)e“’e + (Ze - Zo)e“’e
(Z{' + Zo)eye - (Z( - Zo)e_ﬂ

It is a tedious task to solve Egs. (3-4-10), (3-4-11), (3-4-18), or (3-4-19) for
the line impedance. These equations can be simplified by replacing the exponential

factors with either hyperbolic functions or circular functions. The hyperbolic func-
tions are obtained from

ZJ-:Z()

(3-4-19)

e*” = cosh (yz) = sinh (yz) (3-4-20)
Substitution of the hyperbolic functions in Eq. (3-4-10) yields the line impedance at
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any point from the sending end in terms of the hyperbolic functions:

7 Z, cosh (yz) — Zo sinh (yz) _ _ Z, — Z, tanh (yz)
°Z, cosh (yz) — Z, sinh (yz) °Zo — Z, tanh (vz)

Z

(3-4-21)

Similarly, substitution of the hyperbolic functions in Eq. (3-4-18) yields the line

impedance from the receiving end in terms of the hyperbolic function:

. ZL¢cosh (yd) + Zy sinh (yd) z Z; + Z, tanh (yd)
°Zo cosh (yd) + Z; sinh (yd) °Zo + Ze tanh (yd)

For a lossless line, y = jB; and by using the following relationships between hyper-
bolic and circular functions

Z

(3-4-22)

sinh (jBz) = j sin (Bz) (3-4-23)
cosh (jBz) = cos (Bz) (3-4-24)

the impedance of a lossless transmission line (Zo = R,) can be expressed in terms of
the circular functions:

_ Z,cos (Bz) — jRosin (Bz)  _ Z; — jRo tan (Bz2)

Z= R, cos (Bz) — jZs sin (Bz) TR, — JjZ tan (B2)

(3-4-25)

and

. Z¢cos (Bd) + JjRo sin (Bd) — R Z; + jR, tan (Bd)

zZ= °Ro cos (Bd) + jZ¢ sin (Bd)  "Ro + jZ tan (Bd)

(3-4-26)

Impedance in terms of reflection coefficient or standing-wave ratio.
Rearrangement of Eq. (3-4-18) gives the line impedance—looking at it from the re-
ceiving end—as

1 + Fee_zyd

Z= ZOI——W (3-4—27)
in which the following substitution is made by
_Le—1Iy
Ie = 7.+ Ze (3-4-28)

From Eq. (3-2-12) the reflection coefficient at a distance d from the receiving end is
given by
I = [ee ™ = |T¢le e/ (3-4-29)
Then the simple equation for the line impedance at a distance d from the load is ex-
pressed by
1+T
‘1-T
The reflected coefficient is usually a complex quantity and can be written
I'=|T|e? (3-4-31)

7 =17 (3-4-30)
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where || = |T¢le

¢ =6, — 2Bd
The impedance variation along a lossless line can be found as follows:

1+ |Cle® 1+ |I|(cos ¢ + jsin )

4 = B e ~ R T =T lcos ¢ + jsin 0)
= R(@) + jX(d) = | 2(d) e (3-4-32))
where |Z(d)| = Ro\/ i h ;{f,; 22:$ - I'IFWE (3-4-33)
R(d) = Roy— z|r1|_chF¢|>2+ i (3-4-34)
X(@ = Roy— z|2rl|rc|§sin¢¢+ TP (3-4-35)
0, = arctan <;—f) = arctan (2'1%7‘1‘1.;9) (3-4-36)

Since ¢ = 0, — 2Bd, then ¢ = 0, — 27 if Bd = w. However, cos(@; — 2m) =
cos O and sin(@e — 27) = sin O¢; then

Z(d) = Z<d + g) = Z(d + %) (3-4-37)

It is concluded that the impedance along a lossless line will be repeated for every in-
terval at a half-wavelength distance.

Furthermore, the magnitude of a reflection coefficient |I'| is related to the
standing-wave ratio p by

1+ |T|

p—1
= d = purd .
|T| o1 and p T (3-4-38)
The line impedance at any location from the receiving end can be written
+ 1)+ (p — De”
7 = Ro(p ) + (p — e (3-4-39)

(p+ 1) —(p— De?

This is a very useful equation for determining the line impedance in terms of stand-
ing-wave ratio p, since p can easily be measured by a detector or a standing-wave
meter.

Determination of characteristic impedance. A common procedure for
determining the characteristic impedance and propagation constant of a given trans-
mission line is to take two measurements:

1. Measure the sending-end impedance with the receiving end short-circuited and
record the result:

Z,. = Z, tanh (y¥{) (3-4-40)
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2. Measure the sending-end impedance with the receiving end open-circuited and
record the result:

Z.. = Zycoth (y{) (3-4-41)

Then the characteristic impedance of the measured transmission line is given by
o=V Zsc Z (3'4'42)

and the propagation constant of the line can be computed from

y=a+ jB= % arctanh ; (3-4-43)

Normalized impedance. The normalized impedance of a transmission line
is defined as

=r * jx (3-4-44)

It should be noted that the lowercase letters are commonly designated for normal-
ized quantities in describing the distributed transmission-line circuits.

An examination of Eqgs. (3-4-39), (3-4-40), and (3-4-44) shows that the nor-
malized impedance for a lossless line has the following significant features:

1. The maximum normalized impedance is

Zoax | Vioax | 1+|T|
- = _ = p
Ro  Rolmn| 1—|T]

Zmax =

(3-4-45)

Here z..x is a positive real value and it is equal to the standing-wave ratio p at
the location of any maximum voltage on the line.

2. The minimum normalized impedance is
7 _Zmin_ lvmini =1_|F‘__1-
™ Ro Rllmx| 1+]|T| p

(3-4-46)

Here zmi, is a positive real number also but equals the reciprocal of the
standing-wave ratio at the location of any minimum voltage on the line.

3. For every interval of a half-wavelength distance along the line, Zmax OF Zmin 1S

repeated:
A
Zmax(2) = Zmax<z * E) (3'4-47)
A
Zmin(z) = Zmin<z * 5) (3-4-48)

4. Since V. and V,,, are separated by a quarter-wavelength, z..x is equal to the
reciprocal of zmi, for every A/4 separation:

A 1
me( - Z) T2 () (3-4-49)
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3-4-2 Line Admittance

When a transmission line is branched, it is better to solve the line equations for the
line voltage, current, and transmitted power in terms of admittance rather than
impedance. The characteristic admittance and the generalized admittance are
defined as

1
Yo=5=Go + _]Bo (3-4-50)
Z,
Y = % =G * jB (3-4-51)
Then the normalized admittance can be written
Y Z, 1 .
== — = - = -+ 4.
y 773 g x jb (3-4-52)

Example 3-4-1: Line Impedance

A lossless line has a characteristic impedance of 50 £} and is terminated in a load resis-
tance of 75 (). The line is energized by a generator which has an output impedance of
50 Q and an open-circuit output voltage of 30 V (rms). The line is assumed to be 2.25
wavelengths long. Determine:

a. The input impedance
b. The magnitude of the instantaneous load voltage
c. The instantaneous power delivered to the load

Solution

a. From Eq. (3-4-26) the line that is 2.25 wavelengths long looks like a quarter-
wave line. Then

b. The reflection coefficient is

Re—Ro 75 —-50

= = = 0.2
Re+ Ry 75+ 50 0

Fe

Then the instantaneous voltage at the load is
Ve= V.,e (1 + T'y) = 30(1 + 0.20) =36 V
¢. The instantaneous power delivered to the load is
_ 6o

— = 17.28W
| 75 17.28
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3-5 SMITH CHART

Many of the computations required to solve transmission-line problems involve the
use of rather complicated equations. The solution of such problems is tedious and
difficult because the accurate manipulation of numerous equations is necessary. To
simplify their solution, we need a graphic method of arriving at a quick answer.

A number of impedance charts have been designed to facilitate the graphic so-
lution of transmission-line problems. Basically all the charts are derived from the
fundamental relationships expressed in the transmission equations. The most popular
chart is that developed by Phillip H. Smith [1]. The purpose of this section is to
present the graphic solutions of transmission-line problems by using the Smith chart.

The Smith chart consists of a plot of the normalized impedance or admittance
with the angle and magnitude of a generalized complex reflection coefficient in a
unity circle. The chart is applicable to the analysis of a lossless line as well as a lossy
line. By simple rotation of the chart, the effect of the position on the line can be de-
termined. To see how a Smith chart works, consider the equation of reflection
coefficient at the load for a transmission line as shown in Eq. (3-2-8):

_Z('—ZO_

o=z = Tl =T, + jI (3-5-1)

Since | I'¢| = 1, the value of I'c must lie on or within the unity circle with a radius of
1. The reflection coefficient at any other location along a line as shown in Eq.
(3-2-12) is

T, = e 2de 2 = lre|e~2adej(of—2pd) (3-5-2)

which is also on or within the unity circle. Figure 3-5-1 shows circles for a constant
reflection coefficient I" and constant electrical-length radials Bd.
From Egs. (3-4-29) and (3-4-44) the normalized impedance along a line is

given by

1 + Tee™™
Z Tee (3-5.3)

L= Z; - 1 — Fee_zyd
With no loss in generality, it is assumed that d = 0; then
1+ F( Ze Re + ]X€ .
=— == = =7 + 3-5-4
PTToT o Zo T (3-5-4)
and
z— 1 .
Fe = z + 1 = F, + ]Fi (3-5-5)
Substitution of Eq. (3-5-5) into Eq. (3-5-4) yields
— T2 12
r = J__EL_J; (3_5_6)

(1-r)+TI7
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i“

iri=1

T,
Figure 3-5-1 Constant I circles and
electrical-length radials Bd.
and
2l
MR P G
Equations (3-5-6) and (3-5-7) can be rearranged as
r 2 1 2
r + 12 = -J-
<F 1+r> r <1+r) (3-5-8)
and
1\ 1\
6w (1) = (1) 659
X X

Equation (3-5-8) represents a family of circles in which each circle has a con-
stant resistance r. The radius of any circle is 1/(1 + r), and the center of any circle
is r/(1 + r) along the real axis in the unity circle, where r varies from zero to
infinity. All constant resistance circles are plotted in Fig. 3-5-2 according to Eq.
(3-5-8).

Equation (3-5-9) also describes a family of circles, but each of these circles
specifies a constant reactance x. The radius of any circle is (1/x), and the center of
any circle is at

I,=1 I‘,-=§ (where —0 = x =< )

All constant reactance circles are plotted in Fig. 3-5-3 according to Eq. (3-5-9).
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Figure 3-5-2 Constant resistance r circles.

Figure 3-5-3 Constant reactance x circles.
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There are relative distance scales in wavelength along the circumference of the
Smith chart. Also, there is a phase scale specifying the angle of the reflection
coefficient. When a normalized impedance z is located on the chart, the normalized
impedance of any other location along the line can be found by use of Eq. (3-5-3):

~2yd
2= % (3-5-10)
where
Tee 2 = |T¢|e 22/ 026 (3-5-11)
The Smith chart may also be used for normalized admittance. This is evident
since

1 1
Yo=7-=Go+ jBo and Y=-=G+ jB (3-5-12)
Z Z
Then the normalized admittance is
Y Z, 1
P + b - '13
e Al (3-5-13)

Figure 3-5-4 shows a Smith chart which superimposes Figs. 3-5-2 and 3-5-3
into one chart. The characteristics of the Smith chart are summarized as follows:

1. The constant r and constant x loci form two families of orthogonal circles in
the chart.

2. The constant r and constant x circles all pass through the point (I', = 1,
F,‘ = 0)

3. The upper half of the diagram represents -+ jx.

4. The lower half of the diagram represents — jx.

5. For admittance the constant r circles become constant g circles, and the con-
stant x circles become constant susceptance b circles.

6. The distance around the Smith chart once is one-half wavelength (A/2).

7. At a point of zmn = 1/p, there is a Vuin on the line.

8. At a point of zm.x = p, there is a Vnax 0on the line.

9. The horizontal radius to the right of the chart center corresponds to Viax, Imin,
Zmax, and p (SWR).

10. The horizontal radius to the left of the chart center corresponds to Vi, Imax,
Zmin, and 1/p.

11. Since the normalized admittance y is a reciprocal of the normalized impedance
z, the corresponding quantities in the admittance chart are 180° out of phase
with those in the impedance chart.

12. The normalized impedance or admittance is repeated for every half wavelength
of distance.

13. The distances are given in wavelengths toward the generator and also toward
the load.
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IMPEGANCE OR ADMITTANCE COORDINATES
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Figure 3-5-4 Smith chart.

The magnitude of the reflection coefficient is related to the standing-wave ratio
by the following expression:

p—1
r=——: -5-
IT| Py (3-5-14)
A Smith chart or slotted line can be used to measure a standing-wave pattern directly
and then the magnitudes of the reflection coefficient, reflected power, transmitted

power, and the load impedance can be calculated from it. The use of the Smith chart
is illustrated in the following examples.

Example 3-5-1: Location Determination of Voltage Maximum and Minimum from
Load

Given the normalized load impedance z; = 1 + j1 and the operating wavelength
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Figure 3-5-5 Diagram for Example 3-5-1.
A = 5 cm, determine the first Vi, , first Vi, from the load, and the VSWR p as shown
in Fig. 3-5-5.

Solution

1. Enter zz = 1 + j1 on the chart as shown in Fig. 3-5-6.

2. Read 0.162A on the distance scale by drawing a dashed-straight line from the
center of the chart through the load point and intersecting the distance scale.

3. Move a distance from the point at 0.162A toward the generator and first stop at
the voltage maximum on the right-hand real axis at 0.25A. Then

di (Vi) = (0.25 — 0.162)A = (0.088)(5) = 0.44 cm

4. Similarly, move a distance from the point of 0.162A toward the generator and
first stop at the voltage minimum on the left-hand real axis at 0.5A. Then

&2 (Vimin) = (0.5 — 0.162)A = (0.338)(S) = 1.69 cm

max )

Figure 3-5-6 Graphic solution for
Example 3-5-1.
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5. Make a standing-wave circle with the center at (1, 0) and pass the circle through
the point of 1 + j 1. The location intersected by the circle at the right portion of
the real axis indicates the SWR. This is p = 2.6.

Example 3-5-2: Impedance Determination with Short-Circuit Minima Shift

The location of a minimum instead of a maximum is usually specified because it can be
determined more accurately. Suppose that the characteristic impedance of the line Ry is
50 Q, and the SWR p = 2 when the line is loaded. When the load is shorted, the
minima shift 0.15A toward the load. Determine the load impedance. Figure 3-5-7
shows the diagram for the example.

|
|
\/\/\f' Shorted

— 015\ [~ Loaded

Zl
S
A Ry=509

Figure 3-5-7 Diagram for Example 3-5-2.

<

Solution

1. When the line is shorted, the first voltage minimum occurs at the place of the
load as shown in Fig. 3-5-8.

Figure 3-5-8 Graphic solution for
Example 3-5-2.




Sec. 3.6 Impedance Matching 89

2. When the line is loaded, the first voltage minimum shifts 0.15A from the load.
The distance between two successive minima is one-half wavelength.

3. Plot a SWR circle for p = 2.

4. Move a distance of 0.15A from the minimum point along the distance scale
toward the load and stop at 0.15A.

5. Draw a line from this point to the center of the chart.
6. The intersection between the line and the SWR circle is

ze=1— j0.65
7. The load impedance is
Z, = (1 — jO.65)(50) = 50 — j32.5Q

3-6 IMPEDANCE MATCHING

Impedance matching is very desirable with radio frequency (RF) transmission lines.
Standing waves lead to increased losses and frequently cause the transmitter to mal-
function. A line terminated in its characteristic impedance has a standing-wave ratio
of unity and transmits a given power without reflection. Also, transmission
efficiency is optimum where there is no reflected power. A “flat” line is nonreso-
nant; that is, its input impedance always remains at the same value Zo when the fre-
quency changes.

Matching a transmission line has a special meaning, one differing from that
used in circuit theory to indicate equal impedance seen looking both directions from
a given terminal pair for maximum power transfer. In circuit theory, maximum
power transfer requires the load impedance to be equal to the complex conjugate of
the generator. This condition is sometimes referred to as a conjugate match. In
transmission-line problems marching means simply terminating the line in its charac-
teristic impedance.

A common application of RF transmission lines is the one in which there is a
feeder connection between a transmitter and an antenna. Usually the input imped-
ance to the antenna itself is not equal to the characteristic impedance of the line.
Furthermore, the output impedance of the transmitter may not be equal to the Z, of
the line. Matching devices are necessary to flatten the line. A complete matched
transmission-line system is shown in Fig. 3-6-1.

V4
LT S
| Matching: : Matching |
II device | : device :
Ve = = z, ! ! [ z,
HrTur D
ZK:ZI 20=20 Zo'lZo Z, lIZ,Z
o+ +o o
| IS | L _J

Figure 3-6-1 Matched transmission-line system.
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For a low-loss or lossless transmission line at radio frequency, the characteris-
tic impedance Z, of the line is resistive. At every point the impedances looking in
opposite directions are conjugate. If Z is real, it is its own conjugate. Matching can
be tried first on the load side to flatten the line; then adjustment may be made on the
transmitter side to provide maximum power transfer. At audio frequencies an iron-
cored transformer is almost universally used as an impedance-matching device.
Occasionally an iron-cored transformer is also used at radio frequencies. In a practi-
cal transmission-line system, the transmitter is ordinarily matched to the coaxial
cable for maximum power transfer. Because of the variable loads, however, an
impedance-matching technique is often required at the load side.

Since the matching problems involve parallel connections on the transmission
line, it is necessary to work out the problems with admittances rather than imped-
ances. The Smith chart itself can be used as a computer to convert the normalized
impedance to admittance by a rotation of 180°, as described earlier.

3-6-1 Single-Stub Matching

Although single-lumped inductors or capacitors can match the transmission line, it is
more common to use the susceptive properties of short-circuited sections of trans-
mission lines. Short-circuited sections are preferable to open-circuited ones because
a good short circuit is easier to obtain than a good open circuit.

For a lossless line with Y, = Yo, maximum power transfer requires Y, = Yo,
where Y\, is the total admittance of the line and stub looking to the right at point 1-1
(see Fig. 3-6-2). The stub must be located at that point on the line where the real
part of the admittance, looking toward the load, is Yo. In a normalized unit y;; must
be in the form

ym=yaxy, =1 (3-6-1)

+73)

2+j(

Figure 3-6-2 Single-stub matching for Example 3-6-1.
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if the stub has the same characteristic impedance as that of the line. Otherwise
Yn=Y.2Y, =Y, (3—6—2)

The stub length is then adjusted so that its susceptance just cancels out the suscep-
tance of the line at the junction.

Example 3-6-1: Single-Stub Matching

A lossless line of characteristic impedance Ry = S0 () is to be matched to a load
Z,=50/[2 + j2 + \/5)] Q) by means of a lossless short-circuited stub. The charac-
teristic impedance of the stub is 100 (2. Find the stub position (closest to the load) and
length so that a match is obtained.

Solution
1. Compute the normalized load admittance and enter it on the Smith chart (see
Fig. 3-6-3).

ye=t =B Ve =24 3R
I4

2. Draw a SWR circle through the point of y, so that the circle intersects the unity
circle at the point y,.

ya=1- j2.6

Note that there are an infinite number of y,. Take the one that allows the stub to
be attached as closely as possible to the load.

'l
~0.198
//
\r‘b P
0.215
‘ — +75.2

e
S

Figure 3-6-3 Graphic solution for Example 3-6-1.
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. Since the characteristic impedance of the stub is different from that of the line,

the condition for impedance matching at the junction requires
Y11 = Yd + YS

where Y, is the susceptance that the stub will contribute.

It is clear that the stub and the portion of the line from the load to the junc-
tion are in parallel, as seen by the main line extending to the generator. The ad-
mittances must be converted to normalized values for matchmg on the Smith
chart. Then Eq. (3-6-2) becomes

Yo = ysYo + ¥, Yo,

Yo _ 100 ,
= — =) =[1 -1 - j2.6)]— = +j5.
ys = O y”(m) [1-0-,26)] 0 J5.20

. The distance between the load and the stub position can be calculated from the

distance scale as

d = (0.302 — 0.215)A = 0.087A

. Since the stub contributes a susceptance of + j5.20, enter + j5.20 on the chart

and determine the required distance ¢ from the short-circuited end {(z = 0,
y = ), which corresponds to the right side of the real axis on the chart, by
transversing the chart toward the generator until the point of + j5.20 is reached.
Then

€ = (0.50 — 0.031)A = 0.469A

When a line is matched at the junction, there will be no standing wave in the line
from the stub to the generator.

. If an inductive stub is required,

ya=1+ j2.6
the susceptance of the stub will be

ye = —j5.2

. The position of the stub from the load is

d’' =1[0.50 — (0.215 — 0.198)]A = 0.483A
and the length of the short-circuited stub is
€ =0.031A

3-6-2 Double-Stub Matching

Since single-stub matching is sometimes impractical because the stub cannot be
placed physically in the ideal location, double-stub matching is needed. Double-stub
devices consist of two short-circuited stubs connected in parallel with a fixed length
between them. The length of the fixed section is usually one-eighth, three-eighths,
or five-eighths of a wavelength. The stub that is nearest the load is used to adjust the
susceptance and is located at a fixed wavelength from the constant conductance
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unity circle (g = 1) on an appropriate constant-standing-wave-ratio circle. Then the
admittance of the line at the second stub as shown in Fig. 3-6-4 is
Yo =Yp T yo=1 (3-6-3)
Yzz = de + Ysz = Yo (3-6-4)

In these two equations it is assumed that the stubs and the main line have the same
characteristic admittance. If the positions and lengths of the stubs are chosen prop-
erly, there will be no standing wave on the line to the left of the second stub mea-
sured from the load.

2fys2

lfyﬂ

vV, ~N R0=SOQ —_— - e - +7
£ Y22 Ya2 Yn Ydi Z, =100 +/100

2 1
—5 o
8 ::1 0.40)\l<—

Figure 3-6-4 Double-stub matching for Example 3-6-2.

Example 3-6-2: Double-Stub Matching

The terminating impedance Z, is 100 + ;100 Q, and the characteristic impedance Z,
of the line and stub is 50 Q. The first stub is placed at 0.40A away from the load. The
spacing between the two stubs is 2A. Determine the length of the short-circuited stubs
when the match is achieved. What terminations are forbidden for matching the line by
the double-stub device?

Solution

1. Compute the normalized load impedance z¢ and enter it on the chart as shown in
Fig. 3-6-5:
~ 100 + 100

50 2+ 42

Z¢

2. Plot a SWR p circle and read the normalized load admittance 180° out of phase
with ze on the SWR circle:
ve = 0.25 — j0.25

3. Draw the spacing circle of 2€ by rotating the constant-conductance unity circle
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Figure 3-6-5 Graphic solution for Example 3-6-2.

(g = 1) through a phase angle of 28d = 2B3A = i toward the load. Now y;,
must be on this spacing circle, since y» will be on the g = 1 circle (y;; and yz
are A apart).

4. Move y, for a distance of 0.40A from 0.458 to 0.358 along the SWR p circle
toward the generator and read y,; on the chart:

Yyai = 0.55 — j1.08

5. There are two possible solutions for y,,. They can be found by carrying y, along
the constant-conductance (g = 0.55) circle that intersects the spacing circle at
two points:

¢ yiu = 0.55 — jO.11
vy = 0.55 — j1.88
6. At the junction 1-1,

yn = ya + ya
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Then
Yst = ¥ — ya = (0.55 — jO.11) — (0.55 — j1.08) = +0.97
Similarly,
ya = —j.080
7. The lengths of stub 1 are found as
¢, =(0.25 + 0.123)A = 0.373A
€1 =(0.25 — 0.107)A = 0.143A

8. The 2A section of line transforms y;, to y» and y;; to y)» along their constant
standing-wave circles, respectively. That is,

ya =1- j0.61
yh=1+ j2.60

9. Then stub 2 must contribute
ve = +j0.61
—j2.60

1

yéz

10. The lengths of stub 2 are found as
€, = (0.25 + 0.087)A = 0.337A
€; = (0.308 — 0.25)A = 0.058A

11. It can be seen from Fig. 3-6-5 that a normalized admittance y, located inside the
hatched area cannot be brought to lie on the locus of y,; or y{, for a possible
match by the parallel connection of any short-circuited stub because the spacing
circle and g = 2 circle are mutually tangent. Thus the area of a g = 2 circle is
called the forbidden region of the normalized load admittance for possible match.

Normally the solution of a double-stub-matching problem can be worked out
backward from the load toward the generator, since the load is known and the distance
of the first stub away from the load can be arbitrarily chosen. In quite a few practical
matching problems, however, some stubs have a different Z, from that of the line, the
length of a stub may be fixed, and so on. So it is hard to describe a definite procedure
for solving the double-matching problems.

The flexible coaxial lines are available in different types. Their diameters vary
from 0.635 cm (0.25 in.) to about 2.54 cm (1 in.), depending on the power require-
ment. In some coaxial cables, the inner conductor is stranded or a solid wire, but the
outer conductor is a single braid or double. The dielectric material used in these
coaxial lines is polyethylene, which has low loss at radio frequencies. Particularly
for the RG series, the dielectric is either solid or foam polyethylene. The loss per
unit length for foam polyethylene is even appreciably less than the equivalent solid
polyethylene.
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3-7 MICROWAVE COAXIAL CONNECTORS

For high-frequency operation the average circumference of a coaxial cable must be
limited to about one wavelength, in order to reduce multimodal propagation and
climinate erratic reflection coefficients, power losses, and signal distortion. The
standardization of coaxial connectors during World War II was mandatory for mi-
crowave operation to maintain a low reflection coefficient or a low voltage standing-
wave ratio (VSWR). Since that time many modifications and new designs for mi-
crowave connectors have been proposed and developed. Seven types of microwave
coaxial connectors are described below (see Fig. 3-7-1; TNC is not shown).

1.

APC-3.5 The APC-3.5 (Amphenol Precision Connector-3.5 mm) was
originally developed by Hewlett-Packard, but is now manufactured by Amphe-
nol. The connector provides repeatable connections and has a very low voltage
standing-wave ratio (VSWR). Either the male or female end of this 50-ohm
connector can mate with the opposite type of SMA connector. The APC-3.5
connector can work at frequencies up to 34 GHz.

APC-7 The APC-7 (Amphenol Precision Connector-7 mm) was also devel-
oped by Hewlett-Packard in the mid 1960s, but it was recently improved and is
now manufactured by Amphenol. The connector provides a coupling mecha-
nism without male or female distinction and is the most repeatable connecting
device used for very accurate 50-ohm measurement applications. Its VSWR is
extremely low, in the range of 1.02 to 18 GHz. Maury Microwave also has an
MPC series available.

. BNC The BNC (Bayonet Navy Connector) was originally designed for mili-

tary system applications during World War II. The connector operates very
well at frequencies up to about 4 GHz; beyond that it tends to radiate electro-
magnetic energy. The BNC can accept flexible cables with diameters of up to
6.35 mm (0.25 in.) and characteristic impedance of 50 to 75 ohms. It is now
the most commonly used connector for frequencies under 1 GHz.

. SMA The SMA (Sub-Miniature A) connector was originally designed by

Bendix Scintilla Corporation, but it has been manufactured by Omni-Spectra
Inc. (as the OSM connector) and many other electronic companies. The main
application of SMA connectors is on components for microwave systems. The
connector is seldom used above 24 GHz because of higher-order modes.

. SMC The SMC (Sub-Miniature C) is a 50-ohm connector that is smaller

than the SMA. The connector is manufactured by Sealectro Corporation and
can accept flexible cables with diameters of up to 3.17 mm (0.125 in.) for a
frequency range of up to 7 GHz.

TNC The TNC (Threaded Navy Connector) is merely a threaded BNC. The
function of the thread is to stop radiation at higher frequencies, so that the con-
nector can work at frequencies up to 12 GHz.

Type N The Type N (Navy) connector was originally designed for military
systems during World War II and is the most popular measurement connector
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for the frequency range of 1 to 18 GHz. It is 50- or 75-ohm connector and its
VSWR is extremely low, less than 1.07
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PROBLEMS

3-1. A transmission line has a characteristic impedance of 300 {) and is terminated in a load
of 300 — ;300 . The propagation constant of the line is 0.054 + j3.53 per meter.
Determine:

a. The reflection coefficient at the load
b. The transition coefficient at the load
c. The reflection coefficient at a point 2 m away from the load

3-2. A lossless transmission line has a characteristic impedance of 50 ) and is terminated in
a load of 100 Q. The magnitude of a voltage wave incident to the line is 20 V (rms).
Determine:

a. The VSWR on the line

b. The maximum voltage Vi, and minimum voltage Vi, on the line
¢. The maximum current [y« and minimum current /,,;, on the line
d. The power transmitted by the line

3-3. A lossless line has a characteristic impedance of 75 ) and is terminated in a load of
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3-5.

3-7.

3-8.

3-9.

3-10.

300 €. The line is energized by a generator which has an open-circuit output voltage of
20 V (rms) and output impedance of 75 Q. The line is assumed to be 21 wavelengths
long.

a. Find the sending-end impedance.

b. Determine the magnitude of the receiving-end voltage.

¢. Calculate the receiving-end power at the load.

. A lossless transmission line has a characteristic impedance of 100  and is terminated

in a load of 75 1. The line is 0.75 wavelength long. Determine:

a. The sending-end impedance

b. The reactance which, if connected across the sending end of the line, will make the
input impedance a pure resistance

A coaxial line with a solid polyethylene dielectric is to be used at a frequency of

3 GHz. Its characteristic impedance Z; is 50 {} and its attenuation constant « is

0.0156 Np/m. The velocity factor which is defined as the ratio of phase velocity over

the velocity of light in free space is 0.660. The line is 100 m long and is terminated in

its characteristic impedance. A generator, which has an open-circuit voltage of 50 V

(rms) and an internal impedance of 50 (1, is connected to the sending end of the line.

The frequency is tuned at 3 GHz. Compute:

a. The magnitude of the sending-end voltage and of the receiving-end voltage

b. The sending-end power and the receiving-end power

¢. The wavelengths of the line

. An open-wire transmission line has R =5 Q/m, L =52 X 107*H/m, G =

6.2 X 10*mho/m, and C = 2.13 X 107'°F/m. The signal frequency is 4 GHz. Cal-
culate:

. The characteristic impedance of the line in both rectangular form and polar form

. The propagation constant of the wave along the line

The normalized impedance of a load 100 + ;100

. The reflection coefficient at the load

The sending-end impedance if the line is assumed a quarter-wavelength long

A quarter-wave lossless line has a characteristic impedance of 50 ) and is terminated
in a load of 100 Q. The line is energized by a generator of 20 V (rms) with an internal
resistance of 50 (). Calculate:

a. The sending-end impedance

b. The magnitude of the receiving-end voltage

c. The power delivered to the load.

A lossless transmission line is terminated in an open circuit. The sending end is ener-
gized by a generator which has an open-circuit output voltage of V, (rms) and an inter-
val impedance equal to the characteristic impedance of the line. Show that the sending-
end voltage is equal to the output voltage of the generator.

A lossless transmission line has a characteristic impedance of 300 () and is operated at

a frequency of 10 GHz. The observed standing-wave ratio on the line is 5.0. It is pro-

posed to use a short-circuited stub to match a pure resistor load to the line.

a. Determine the distance in centimeters from the load to the place where the stub
should be located. (Two possible solutions.)

b. Find the length of the stub in centimeters. (Two possible solutions.)

A lossless line has a characteristic impedance of 50 Q and is loaded by 60 — j60 (2.

One stub is at the load, and the other is 3A/8 distance away from the first.

a. Determine the lengths in wavelength of the two short-circuited stubs when a match
is achieved.

oo T

e
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b. Locate and crosshatch the forbidden region of the normalized admittance for possi-
ble match.

. A lossless transmission line has a characteristic impedance of 300 ) and is terminated
by an impedance Z,. The observed standing-wave ratio on the line is 6, and the dis-
tance of the first voltage minimum from the load is 0.166A.

a. Determine the load Z.
b. Find the lengths in A of two shorted stubs, one at the load and one at A /4 from the
load, which are required to match the load to the line.

A single-stub tuner is to match a lossless line of 400 £} to a load of 800 — ;300 (1.
The frequency is 3 GHz.

a. Find the distance in meters from the load to the tuning stub.

b. Determine the length in meters of the short-circuited stub.

A half-wave-dipole antenna has a driving-point impedance of 73 + j42.5 (2. A loss-

less transmission line connected to a TV set has a characteristic impedance of 300 €).

The problem is to design a shorted stub with the same characteristic impedance to

match the antenna to the line. The stub may be placed at a location closest to the an-

tenna. The reception is assumed to be Channel 83 at a frequency of 0.88525 GHz.

a. Determine the susceptance contributed by the stub.

b. Calculate the length in centimeters of the stub.

c¢. Find the distance in centimeters between the antenna and the point where the stub
is placed. [Note: There are two sets of solutions.]

A lossless transmission line has a characteristic impedance of 100 () and is loaded by

100 + 7100 Q. A single shorted stub with the same characteristic impedance is in-

serted at A/4 from the load to match the line. The load current is measured to be 2 A.

The length of the stub is A/8.

a. Determine the magnitude and the phase of the voltage across the stub location.

b. Find the magnitude and the phase of the current flowing through the end of the
stub.

A double-stub matching line is shown in Fig. P3-15. The characteristic resistances of

the lossless line and stubs are 100 (2, respectively. The spacing between the two stubs

is A/8. The load is 100 + j100. One stub is located at the load. Determine:

a. The reactances contributed by the stub

b. The lengths of the two shorted double-stub tuners [Note: There are two sets of so-

lutions. ]
Z
AW O
v, Ry=509

Figure P3-15



Problems 101

3-16.

3-17.

3-18.

A lossless transmission line has a characteristic impedance Z, of 100 Q and is loaded
by an unknown impedance. Its voltage standing-wave ratio is 4 and the first voltage
maximum is A/8 from the load.

a. Find the load impedance.

b. To match the load to the line, a quarter section of a different line with a characteris-
tic impedance Zy; < Z, is to be inserted somewhere between (in cascade with) the
load and the original line. Determine the minimum distance between the load and
matching section, and calculate the characteristic impedance Zy; in terms of Z,.

A lossless transmission line has a characteristic impedance of 100 Q and is loaded by

an unknown impedance. The standing-wave ratio along the line is 2. The first two

voltage minima are located at z = —10 and —35 cm from the load where z = 0.

Determine the load impedance.

A matched transmission line is shown in Fig. P3-18.

a. Find ¢, and d which provide a proper match.
b. With the line and load properly matched determine the VSWR on the section of

line between the stubs.

Figure P3-18



Chapter 4

Microwave Waveguides
and Components

4-0 INTRODUCTION

In general, a waveguide consists of a hollow metallic tube of a rectangular or circu-
lar shape used to guide an electromagnetic wave. Waveguides are used principally at
frequencies in the microwave range; inconveniently large guides would be required
to transmit radio-frequency power at longer wavelengths. At frequency range X band
from 8.00 to 12.0 GHz, for example, the U.S. standard rectangular waveguide WR-
90 has an inner width of 2.286 c¢m (0.9 in.) and an inner height of 1.016 cm
(0.4 in.); but its outside dimensions are 2.54 ¢cm (1 in.) wide and 1.27 cm (0.5 in.)
high [1].

In waveguides the electric and magnetic fields are confined to the space within
the guides. Thus no power is lost through radiation, and even the dielectric loss is
negligible, since the guides are normally air-filled. However, there is some power
loss as heat in the walls of the guides, but the loss is very small.

It is possible to propagate several modes of electromagnetic waves within a
waveguide. These modes correspond to solutions of Maxwell’s equations for particu-
lar waveguides. A given waveguide has a definite cutoff frequency for each allowed
mode. If the frequency of the impressed signal is above the cutoff frequency for a
given mode, the electromagnetic cnergy can be transmitted through the guide for
that particular mode without attenuation. Otherwise the electromagnetic energy
with a frequency below the cutoff frequency for that particular mode will be attenu-
ated to a negligible value in a relatively short distance. The dominant mode in a par-
ticular guide is the mode having the lowest cutoff frequency. It is advisable to choose
the dimensions of a guide in such a way that, for a given input signal, only the en-
ergy of the dominant mode can be transmitted through the guide.

The process of solving the waveguide problems may involve three steps:

102
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1. The desired wave equations are written in the form of either rectangular or
cylindrical coordinate systems suitable to the problem at hand.

2. The boundary conditions are then applied to the wave equations set up in
step 1.

3. The resultant equations usually are in the form of partial differential equations
in either time or frequency domain. They can be solved by using the proper
method.

4-1 RECTANGULAR WAVEGUIDES

A rectangular waveguide is a hollow metallic tube with a rectangular cross section.
The conducting walls of the guide confine the electromagnetic fields and thereby
guide the electromagnetic wave. A number of distinct field configurations or modes
can exist in waveguides. When the waves travel longitudinally down the guide, the
plane waves are reflected from wall to wall. This process results in a component of
either electric or magnetic field in the direction of propagation of the resultant wave;
therefore the wave is no longer a transverse electromagnetic (TEM) wave. Figure
4-1-1 shows that any uniform plane wave in a lossless guide may be resolved into
TE and TM waves.

U
Figure 4-1-1 Plane wave reflected in a
waveguide. -

It is clear that when the wavelength A is in the direction of propagation of the
incident wave, there will be one component A, in the direction normal to the
reflecting plane and another A, parallel to the plane. These components are

A

A = -1-
cos @ (4-1-1)
A
A = -1-
? sin @ (4-1-2)

where 8 = angle of incidence
A = wavelength of the impressed signal in unbounded medium

A plane wave in a waveguide resolves into two components: one standing wave
in the direction normal to the reflecting walls of the guide and one traveling wave in
the direction parallel to the reflecting walls. In lossless waveguides the modes may
be classified as either transverse electric (TE) mode or transverse magnetic (TM)
mode. In rectangular guides the modes are designated TE.. or TM,... The integer m
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denotes the number of half waves of electric or magnetic intensity in the x direction,
and n is the number of half waves in the y direction if the propagation of the wave is
assumed in the positive z direction.

4-1-1 Solutions of Wave Equations in Rectangular
Coordinates

As stated previously, there are time-domain and frequency-domain solutions for
each wave equation. However, for the simplicity of the solution to the wave equation
in three dimensions plus a time-varying variable, only the sinusoidal steady-state or
the frequency-domain solution will be given. A rectangular coordinate system is
shown in Fig. 4-1-2.

/_Z
/

|
4 1
|
A AR

0 X Figure 4-1-2 Rectangular coordinates.

The electric and magnetic wave equations in frequency domain in Egs.
(2-1-20) and (2-1-21) are given by
2t VE = y’E (4-1-3)
V’H = y'H (4-1-4)
vyhere Yy = Vjou(o + jwe) = a + jB. These are called the vector wave equa-
tions.

Rectangular coordinates are the usual right-hand system. The rectangular com-
ponents of E or H satisfy the complex scalar wave equation or Helmholtz equation

Vg =yl (4-1-5)
The Helmbholtz equation in rectangular coordinates is
9? 9? 9?
i L Yy (4-1-6)

ax? ' 9yr | 9z®
This is a linear and inhomogeneous partial differential equation in three di-
mensions. By the method of separation of variables, the solution is assumed in the

form of
¥ = X(x)Y (»)Z(2) (4-1-7)

where X (x) = a function of the x coordinate only
Y (y) = a function of the y coordinate only
Z(z) = a function of the z coordinate only
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Substitution of Eq. (4-1-7) in Eq. (4-1-6) and division of the resultant by Eq.
(4-1-7) yield
1d*’X  1d°Y  1d°Z
St ot o=
X dx* Ydy* Zdz?
Since the sum of the three terms on the left-hand side is a constant and each term is
independently variable, it follows that each term must be equal to a constant.

Let the three terms be kZ, k7, and k?, respectively; then the separation equation
is given by

v (4-1-8)

~ki— ki — k=17 (4-1-9)
The general solution of each differential equation in Eq. (4-1-8)
d’X ,
=L = —px -1-
o=k (4-1-10)
dz
d—yf = —kY (4-1-11)
d*z ,
—L = _rz -1-
3 = (4-1-12)
will be in the form of
X = A sin (kx) + B cos (k.x) (4-1-13)
Y = Csin (k,y) + D cos (k,y) (4-1-14)
Z = E sin (k,z) + F cos (k.z) y (4-1-15)

The total solution of the Helmholtz equation in rectangular coordinates is

¢ = [A sin (kx) + B cos (kx)][C sin (k,y) + D cos (k,y)]
X [E sin (k,z) + F cos (k.z)] (4-1-16)

The propagation of the wave in the guide is conventionally assumed in the positive z
direction. It should be noted that the propagation constant 7y, in the guide differs
from the intrinsic propagation constant y of the dielectric. Let

Yi=yr+ k4 ki=vyr+ k2 4-1-17)

where k. = Vki + kj is usually called the cutoff wave number. For a lossless
dielectric, y*> = —w?ue. Then

Ye = +Volue — K2 (4-1-18)
There are three cases for the propagation constant 7, in the waveguide.
Case 1. There will be no wave propagation (evanescence) in the guide if

w?pe = kZ and vy, = 0. This is the critical condition for cutoff propagation. The
cutoff frequency is expressed as
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1 \/———
. = k2 + k3 : (4-1-19)
F Ve T
Case II. The wave will be propagating in the guide if w>ue > kZ and
f 2
v = 2B = tjoVue /1 - (;) (4-1-20)

This means that the operating frequency must be above the cutoff frequency in order
for a wave to propagate in the guide.

Case III. The wave will be attenuated if w’ue < kZ and

ve = *a, = o Ve (j})z -1 (4-1-21)

This means that if the operating frequency is below the cutoff frequency, the wave
will decay exponentially with respect to a factor of — a,z and there will be no wave
propagation because the propagation constant is a real quantity. Therefore the solu-
tion to the Helmholtz equation in rectangular coordinates is given by

¢ = [A sin (kx) + B cos (k.x)][C sin (k,y) + D cos (k,y)Je™s* (4-1-22)
4-1-2 TE Modes in Rectangular Waveguides

It has been previously assumed that the waves are propagating in the positive z di-

rection in the waveguide. Figure 4-1-3 shows the coordinates of a rectangular
waveguide.

o

L . | x Figure 4-1-3 Coordinates of a rectan-
I gular guide.

The TE,., modes in a rectangular guide are characterized by E, = 0. In other
words, the z component of the magnetic field, H., must exist in order to have energy
transmission in the guide. Consequently, from a given Helmholtz equation,

V?H, = v?’H, (4-1-23)
a solution in the form of
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H, = [Am sin (m) + B, cos <m)] X [Cn sin (M> + D, cos (’”T)’>] o e
a a b b
(4-1-24)

will be determined in accordance with the given boundary conditions, where
k. = mm/a and k, = nw /b are replaced. For a lossless dielectric, Maxwell’s curl
equations in frequency domain are

VXE=—-jouH (4-1-25)
V X H = jweE (4-1-26)
In rectangular coordinates, their components are
dE, OE, )
- = _ H. 4-1-2
ay o Jop ( 7)
0E, O9E. .
- o jouH, (4-1-28)
0E, OE, .
” oy - jouH, (4-1-29)
0H. 4H,
— _ 2 = iweE, 4-1-
oy o Jwe ( 30)
0H, oH. .
E ox ——ja)EEy (4-1-31)
dH, dH,
— — — = jweE, 4-1-
P 3 Jwe (4-1-32)
With the substitution 3/9z = — jB, and E. = 0, the foregoing equations are sim-
plified to
B.E, = —wuH, (4-1-33)
B.E. = wuH, (4-1-34)
dE, OE. .
a—xy - —('97 = —]w,qu (4-1-35)
oH, . .
3 + jB.H, = jweE, (4-1-36)
oH, _ .
— jB:H. — — = jweE, (4-1-37)
dax
oH, oH, _
" oy 0 (4-1-38)

Solving these six equations for E,, E,, H,, and H, in terms of H, will give the TE-
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mode field equations in rectangular waveguides as

~ Zjop 3H.
E, 2 oy (4-1-39)
 Jou 34,
Y 2 ox (4-1-40)
E. =0 (4-1-41)
_ng oH,
H =———— 4-1-42
kZ dx ( )
—ng dH,
=L 4-1-4
k2 9y ( 3)
H, = Eq. (4-1-24) (4-1-44)

where k? = w?ue — B3 has been replaced.

Differentiating Eq. (4-1-24) with respect to x and y and then substituting the
results in Egs. (4-1-39) through (4-1-43) yield a set of field equations. The boundary
conditions are applied to the newly found field equations in such a manner that either
the tangent E field or the normal H field vanishes at the surface of the conductor.
Since E. = 0, then dH./dy = 0 at y = 0, b. Hence C, = 0. Since E, = 0, then
oH./ox =0atx =0, a. Henee A, = Q.

It is generally concluded that the normal derivative of H, must vanish at the
conducting surfaces—that is,

0H.

=0 (4-1-45)

at the guide walls. Therefore the magnetic field in the positive z direction is given by
H, = Hy, cos <ﬂ?) cos (ﬂ;—y)e‘f"sz (4-1-46)

where Ho. is the amplitude constant.
Substitution of Eq. (4-1-46) in Egs. (4-1-39) through (4-1-43) yields the TE,,
field equations in rectangular waveguides as

E. = Eq cos <ﬂ;’i‘> sin (”—Z—X)e-fﬁsz (4-1-47)
E, = Ey, sin (Tgi‘) cos (ﬁ:—y)e-fﬂsz (4-1-48)
E =0 (4-1-49)
H,. = Hy, sin <_a—{> cos (_m;_y e B2 (4-1-50)

H, = H,, cos <m) sin <mTy)e“"’KZ (4-1-51)
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H, = Eq. (4-1-46) 4-1-52)
wherem =0, 1, 2, .
n=20,1,2,.
m=n=20 excepted

The cutoff wave number k., as defined by Eq. (4-1-17) for the TE,.. modes, is given
by
2 2
k. = (”’—”) + (”—”) = w.Vpe (4-1-53)

a b

where a and b are in meters. The cutoff frequency, as defined in Eq. (4-1-19) for the
TE... modes, is
2 2

1
= (4-1-54)
J 2V e
The propagation constant (or the phase constant here) 3,, as defined in Eq. (4-1-18),
is expressed by

B, = oVue/1 - (f?)z (4-1-55)

The phase velocity in the positive z direction for the TE,., modes is shown as

oy
“T B V1= (fy

where v, = 1/°V pe is the phase velocity in an unbounded dielectric.
The characteristic wave impedance of TE,.. modes in the guide can be derived
from Eqs. (4-1-33) and (4-1-34):

Zg=£=—5=%=+ (4-1-57)

H, He B V1= (f/f)

where 7 = V pu/e is the intrinsic impedance in an unbounded dielectric. The wave-
length A, in the guide for the TE,,, modes is given by

A
Ay = ———e
V1 = (f/f)

where A = v,/ f is the wavelength in an unbounded dielectric.

Since the cutoff frequency shown in Eq. (4-1-54) is a function of the modes
and guide dimensions, the physical size of the waveguide will determine the propa-
gation of the modes. Table 4-1-1 tabulates the ratio of cutoff frequency of some
modes with respect to that of the dominant mode in terms of the physical dimension.

Whenever two or more modes have the same cutoff frequency, they are said to
be degenerate modes. In a rectangular guide the corresponding TE,.. and TM,,,
modes are always degenerate. In a square guide the TE.., TE.., TM,., and TM,,
modes form a foursome of degeneracy. Rectangular guides ordinarily have dimen-
sions of a = 2b ratio. The mode with the lowest cutoff frequency in a particular

(4-1-56)

(4-1-58)



110 Microwave Waveguides and Components

TABLE 4-1-1 MODES OF (f.)m/f. FORa = b

Chap. 4

Modes

£/ fio TEn TEx, TE12 TE2
a/ b TE o TEq, T™y TEx TEo: ™, T T™,, TE3
1 1 1 1.414 2 2 2.236 2.236 2.828 3
1.5 1 1.5 1.803 2 3 2.500 3.162 3.606 3
2 1 2 2.236 2 4 2.828 4.123 4.472 3
3 1 3 3.162 2 6 3.606 6.083 6.325 3
20 1 oo 0 2 oo o0 00 oo 3

guide is called the dominant mode. The dominant mode in a rectangular guide with
a > b is the TE;o mode. Each mode has a specific mode pattern (or field pattern).
It is normal for all modes to exist simultaneously in a given waveguide. The sit-
uation is not very serious, however. Actually, only the dominant mode propagates,
and the higher modes near the sources or discontinuities decay very fast.

Example 4-1-1: TE, in Rectangular Waveguide
An air-filled rectangular waveguide of inside dimensions 7 X 3.5 cm operates in the

dominant TE, mode as shown in Fig. 4-1-4.
-z
¥ e
| 7
)1 —_— L
s
’
/
Iy 7
3sem| 7
'R
0 7cm > x for Example 4-1-1.

a. Find the cutoff frequency.
b. Determine the phase velocity of the wave in the guide at a frequency of 3.5 GHz.
¢. Determine the guided wavelength at the same frequency.

Solution

a f _¢ _ 3x10®
O RV VAT = 2.14 GHz
c 3 x 108
Vg = = = 3.78 X 10® m/s
V= (B VI - (2.14/3.5)
A 3 x 108/(3.5 x 10°
= = [ )~ 108 em

C. A, = =

V1 = (f/f)

V1 - (2.14/3.5)?

—>- Figure 4-1-4 Rectangular waveguide
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4-1-3 TM Modes in Rectangular Waveguides

The TM,,, modes in a rectangular guide are characterized by H, = 0. In other
words, the z component of an electric field E must exist in order to have energy
transmission in the guide. Consequently, the Helmholtz equation for E in the rectan-
gular coordinates is given by

V2E, = y’E, (4-1-59)

A solution of the Helmholtz equation is in the form of

E, = |A, sin <r_n_7r£> + B,, cos (@)][C" sin (m) + D, cos (m) e ¢
a a b b

(4-1-60)

which must be determined according to the given boundary conditions. The proce-
dures for doing so are similar to those used in finding the TE-mode wave.

The boundary conditions on E, require that the field vanishes at the waveguide
walls, since the tangent component of the electric field E. is zero on the conducting
surface. This requirement is that for £, = 0 at x = 0, g, then B, = 0, and for
E.=0aty =0, b, then D, = 0. Thus the solution as shown in Eq. (4-1-60) re-
duces to

E. = Eo, sin (—'”gﬁ) sin (%’-y-)e—fﬂsz (4-1-61)

wherem = 1, 2, 3,

n=1,2,3
If either m = 0 or n = 0, the field intensities all vanish. So there is no TMg, or
TM;o mode in a rectangular waveguide, which means that TE,, is the dominant
mode in a rectangular waveguide for a > b. For H, = 0, the field equations, after
expanding V X H = jweE, are given by

3 v v e

oE, . .
3y + JBsE, = — jopH; (4-1-62)
oE. .
JBsEx + —— = jopH, (4-1-63)
OE, OE. _
o 0 (4-1-64)
B.H, = weE, (4-1-65)
—B¢H: = wek, (4-1-66)
dH, oH, .
s 3y JjweE, (4-1-67)

These equations can be solved simultaneously for E;, E,, H., and H, in terms of E, .
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The resultant field equations for TM modes are
— —JBs %{

E, 2 ox (4-1-68)
_ ~JBe a_Ez

E, K2 oy (4-1-69)

E. = Eq. (4-1-61) (4-1-70)
_ Jjwe OF;

H, K2 ay (4-1-71)
_ TJwe oE,

H, 2 ax 4-1-72)

H. =0 (4-1-73)

where B2 — w’ue = —kZ is replaced.

Differentiating Eq. (4-1-61) with respect to x or y and substituting the results
in Egs. (4-1-68) through (4-1-73) yield a new set of field equations. The TM,,, mode
field equations in rectangular waveguides are

E, = Eq cos (mz—x) sin (”_";_X)e~jpgz (4-1-74)
E, = Ey, sin (m%{> cos <P—Z—y)e'fﬁsz (4-1-75)
E. = Eq. (4-1-61) (4-1-76)
H, = Hy, sin (mﬁ cos (’L’Z.X)e—mgz (4-1-77)
H, = Hy, cos (ﬂa—x> sin (—n:—)e‘fﬁxz (4-1-78)
H, = (4-1-79)

Some of the TM-mode characteristic equations are identical to those of the TE
modes, but some are different. For convenience, all are shown here:

__ 1 m* .
fC—Z\//.; 22 +b2 (4-1-80)
B, = wVipe 1‘@; (4-1-81)
A= (4-1-82)
VL= (5 fP

Dp (4-1-83)

TN = (A f)
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Z, = gi = n\/l - <§>2 (4-1-84)

4-1-4 Power Transmission in Rectangular
Waveguides

The power transmitted through a waveguide and the power loss in the guide walls
can be calculated by means of the complex Poynting theorem described in Chapter
2. It is assumed that the guide is terminated in such a way that there is no reflection
from the receiving end or that the guide is infinitely long compared with the wave-
length. From the Poynting theorem in Section 2-2, the power transmitted through a
guide is given by

Pu=fﬁp~ds=§%(ExH*)-ds (4-1-85)

For a lossless dielectric, the time-average power flow through a rectangular guide is
given by

-1 2 gy = Lo 2
P, = ZZgJ; |E|* da 5 fa |H|? da (4-1-86)

E E
Where & = 4 " "H

|EP = |EJ + |E P
|HP = |HJ] + |H]

For TE,.. modes, the average power transmitted through a rectangular waveguide is
given by

P, + |E,[2) dx dy (4-1-87)

=_—____‘l_(ff/f)2jbfa (| E.
2 b

For TM,.. modes, the average power transmitted through a rectangular waveguide is
given by

1
P, =
V1 = (f/f)

where 7 = V /e is the intrinsic impedance in an unbounded dielectric.

b ra
f f (|E:|* + | E,]*) dx dy (4-1-88)
0 Y0

4-1-5 Power Losses in Rectangular Waveguides
There are two types of power losses in a rectangular waveguide:

1. Losses in the dielectric
2. Losses in the guide walls

First we shall consider power losses caused by dielectric attenuation. In a low-
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loss dielectric (that is, o < ue€), the propagation constant for a plane wave traveling
in an unbounded lossy dielectric is given in Eq. (2-5-20) by

=9 |k _Mno -1-
o 2\/: : (4-1-89)

The attenuation caused by the low-loss dielectric in the rectangular waveguide for
the TE,., or TM,., modes is given by

9 4-1-90
a, NG or TE mode (4-1-90)
a, = %ﬂw —(f/f?  for TM mode (4-1-90a)

Asf > f., the attenuation constant in the guide approaches that for the unbounded
dielectric given by Eq. (4-1-89). However, if the operating frequency is way below
the cutoff frequency, f < f., the attenuation constant becomes very large and non-

propagation occurs.
Now we shall consider power losses caused by the guide walls. When the elec-

tric and magnetic intensities propagate through a lossy waveguide, their magnitudes
may be written

|E| = | Eo:le™ (4-1-91)
|H| =) Ho:Jeos 4-1-9%)
where Eo, and Ho, are the field intensities at z = 0. It is interesting to note that, for a

low-loss guide, the time-average power flow decreases proportionally to e = 2%,
Hence

Pu- = (Pu + Ploss)e-2ag2 (4'1’93)
For Poss € Py and 2a,z <€ 1,
Ploss _
7. + 1 =1+ 2a, (4-1-94)
Finally,
— PL
a, = 2P, (4-1-95)

where P, is the power loss per unit length. Consequently, the attenuation constant of
the guide walls is equal to the ratio of the power loss per unit length to twice the

power transmitted through the guide.

Since the electric and magnetic field intensities established at the surface of a
low-loss guide wall decay exponentially with respect to the skin depth while the
waves progress into the walls, it is better to define a surface resistance of the guide
walls as

R, = L w—({_& ()/square (4-1-96)
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where p = resistivity of the conducting wall in ohms-meter
o = conductivity in mhos per meier
& = skin depth or depth of penetration in meters

The power loss per unit length of guide is obtained by integrating the power
density over the surface of the conductor corresponding to the unit length of the
guide. This is

P = % f | H,|* ds Wiunit length (4-1-97)

where H, is the tangential component of magnetic intensity at the guide walls.
Substitution of Eqs. (4-1-86) and (4-1-97) in Eq. (4-1-95) yields

2
a = _fégfl,l |Iz||z(3a (4-1-98)
where
|H[ = |H:* + |H,[ (4-1-99)
|H,|* = |H.|> + | Hy|? (4-1-100)

Example 4-1-2: TE,, Mode in Rectangular Waveguide

An airfilled waveguide with a cross section 2 X 1 cm transports energy in the TEq
mode at the rate of 0.5 hp. The impressed frequency is 30 GHz. What is the peak value
of the electric field occurring in the guide? (Refer to Fig. 4-1-5.)

Solution The field components of the dominant mode TE,, can be obtained by sub-
stituting m = 1 and n = 0 in Egs. (4-1-47) through (4-1-52). Then

E
E.=0 H, =~ sin (ﬂ)e-ﬂ;gz
Z, a
E, = Eq, sin (ff)e—fﬁgz H, =0
a
E.=0 H, = H,, cos <z£>e“f"g”
a

where Z, = wpo/Be.

AN
N\
N

._.
o)
3
N

| Figure 4-1-5 Rectangular waveguide
T 2cm > for Example 4-1-2.

o
N\
N
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The phase constant 3, can be found from

2,106 ™ - Qf)y 1 \/4 X 9 X 102 1
w —_— —— = — — T 71' —
V@ Bofo ™2 Ve g2 9 x 10° 4 x 10

193.57r = 608.81 rad/m

Bs

The power delivered in the z direction by the guide is

b ra
P = Re[;f (E x H*)] dx dyu,

L[ o o)« (e ()]
2 [ o () 0

E%yﬁab
[OF 7%}
1E 193.5w(107%)(2 x 107?)
Y27 (3 X 10947 X 107)

Bl=

373 =

Eg, = 53.87 kV/m
The peak value of the electric intensity is 53.87 kV/m.

4-1-6 Excitations of Modes in Rectangular
Waveguides

In general, the field intensities of the desired mode in a waveguide can be established
by means of a probe or loop-coupling device. The probe may be called a monopole
antenna; the coupling loop, the loop antenna. A probe should be located so as to ex-
cite the electric field intensity of the mode, and a coupling loop in such a way as to
generate the magnetic field intensity for the desired mode. If two or more probes or
loops are to be used, care must be taken to ensure the proper phase relationship be-
tween the currents in the various antennas. This factor can be achieved by inserting
additional lengths of transmission line in one or more of the antenna feeders.
Impedance matching can be accomplished by varying the position and depth of the
antenna in the guide or by using impedance-matching stubs on the coaxial line feed-
ing the waveguide. A device that excites a given mode in the guide can also serve
reciprocally as a receiver or collector of energy for that mode. The methods of exci-
tation for various modes in rectangular waveguides are shown in Fig. 4-1-6.

In order to excite a TE;; mode in one direction of the guide, the two exciting
antennas should be arranged in such a way that the field intensities cancel each other
in one direction and reinforce in the other. Figure 4-1-7 shows an arrangement for
launching a TE,, mode in one direction only. The two antennas are placed a quarter-
wavelength apart and their phases are in time quadrature. Phasing is compensated by
use of an additional quarter-wavelength section of line connected to the antenna
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Coaxial line

Antenna
probe

TM;; mode T™M,; mode

Figure 4-1-6 Methods of exciting various modes in rectangular waveguides.

—1 — 1
QOut of 1 A 2 In phase

phase 2 «— )*EE‘.}V\ —_— 2

Waveguide / Waveguide
Antenna | r——= Antenna
probe

probe
Figure 4-1-7 A method of launching a
TE,» mode in one direction only.

RF input

feeders. The field intensities radiated by the two antennas are in phase opposition to
the left of the antennas and cancel each other, whereas in the region to the right of
the antennas the field intensities are in time phase and reinforce each other. The re-
sulting wave thus propagates to the right in the guide.

Some higher modes are generated by discontinuities of the waveguide such as
obstacles, bends, and loads. However, the higher-order modes are, in general, more
highly attenuated than the corresponding dominant mode. On the other hand, the
dominant mode tends to remain as a dominant wave even when the guide is large
enough to support the higher modes.

4-1-7 Characteristics of Standard Rectangular
Waveguides

Rectangular waveguides are commonly used for power transmission at microwave
frequencies. Their physical dimensions are regulated by the frequency of the signal
being transmitted. For example, at X-band frequencies from 8 to 12 GHz, the out-
side dimensions of a rectangular waveguide, designated as EIA WR (90) by the
Electronic Industry Association, are 2.54 cm (1.0 in.) wide and 1.27 c¢cm (0.5 in.)
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TABLE 4-1.7 CHARACTERISTICS OF STANDARD RECTANGULAR WAVEGUIDES

Physical dimensions Cutoff Recommended
frequency for frequency
EIA® Inside, in cm (in.) Outside, in ¢cm (in.) air-filled range for
designation waveguide TE; mode
WR( ) Width Height Width Height in GHz in GHZ
2300 58.420 29.210 59.055 29.845 0.257 0.32-0.49
(23.000) (11.500) (23.250) (11.750)
2100 53.340 26.670 53.973 27.305 0.281 0.35-0.53
(21.000) (10.500) (21.250) (10.750)
1800 45.720 22.860 46.350 23.495 0.328 0.41-0.62
(18.000) (9.000) (18.250) (9.250)
1500 38.100 19.050 38.735 19.685 0.394 0.49-0.75
(15.000) (7.500) (15.250) (7.750)
1150 29.210 14.605 29.845 15.240 0.514 0.64-0.98
(11.500) (5.750) (11.750) (6.000)
975 24.765 12.383 25.400 13.018 0.606 0.76-1.15
(9.750) (4.875) (10.000) (5.125)
770 19.550 9.779 20.244 10.414 0.767 0.96-1.46
(7.700) (3.850) (7.970) (4.100)
650 16.510 8.255 16.916 8.661 0.909 1.14-1.73
(6.500) (3.250) (6.660) (3.410)
510 12.954 6.477 13.360 6.883 1.158 1.45-2.20
(5.100) (2.500) (5.260) (2.710)
430 10.922 5.461 11.328 5.867 1.373 1.72-2.61
(4.300) (2.150) (4.460) (2.310)
340 8.636 4.318 9.042 4.724 1.737 2.17-3.30
(3.400) (1.700) (3.560) (1.860)
284 7.214 3.404 7.620 3.810 2.079 2.60-3.95
(2.840) (1.340) (3.000) (1.500)
229 5.817 2.908 6.142 3.233 2.579 3.22-4.90
(2.290) (1.145) (2.418) (1.273)
187 4.755 2.215 5.080 2.540 3.155 3.94-5.99
(1.872) (0.872) (2.000) {1.000)
159 4.039 2.019 4.364 2.344 3.714 4.64-7.05
(1.590) (0.795) (1.718) (0.923)
137 3.485 1.580 3.810 1.905 4.304 5.38-8.17
(1.372) (0.622) (1.500) (0.750)
112 2.850 1.262 3.175 1.588 5.263 6.57-9.99
(1.122) (0.497) (1.250) (0.625)
90 2.286 1.016 2.540 1.270 6.562 8.20-12.50
(0.900) (0.400) (1.000) (0.500)
75 1.905 0.953 2.159 1.207 7.874 9.84-15.00
(0.750) (0.375) (0.850) (0.475)
62 1.580 0.790 1.783 0.993 9.494 11.90-18.00
(0.622) (0.311) (0.702) (0.391)
5t 1.295 0.648 1.499 0.851 11.583 14.50-22.00
(0.510) (0.255) (0.590) (0.335)
42 1.067 0.432 1.270 0.635 14.058 17.60-26.70
(0.420) (0.170) (0.500) (0.250)

2Electronic Industry Association
®Rectangular Waveguide
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TABLE 4-1.7 CHARACTERISTICS OF STANDARD RECTANGULAR WAVEGUIDES (Cont.)
Physical dimensions Cutoff Recommended
frequency for frequency
ElA® Inside, in cm (in.) Outside, in cm (in.) air-filled range for
designation waveguide TE,, mode
WR®( ) Width Height Width Height in GHz in GHZ
34 0.864 0.432 1.067 0.635 17.361 21.70-33.00
(0.340) (0.170) (0.420) (0.250)
28 0.711 0.356 0.914 0.559 21.097 26.40-40.00
(0.280) (0.140) (0.360) (0.220)
22 0.569 0.284 0.772 0.488 26.362 32.90-50.10
(0.224) 0.112) (0.304) 0.192)
19 0.478 0.239 0.681 0.442 31.381 39.20-59.60
(0.188) (0.094) (0.268) (0.174)
15 0.376 0.188 0.579 0.391 39.894 49.80-75.80
(0.148) (0.074) (0.228) (0.154)
12 0.310 0.155 0.513 0.358 48.387 60.50-91.90
(0.122) (0.061) (0.202) (0.141)
10 0.254 0.127 0.457 0.330 59.055 73.80-112.00
(0.100) (0.050) (0.180) (0.130)
8 0.203 0.102 0.406 0.305 73.892 92.20-140.00
(0.080) (0.040) (0.160) 0.120)
7 0.165 0.084 0.343 0.262 90.909 114.00-173.00
(0.065) (0.033) (0.135) (0.103)
5 0.130 0.066 0.257 0.193 115.385 145.00-220.00
(0.051) (0.026) (0.101) (0.076)
4 0.109 0.056 0.211 0.157 137.615 172.00-261.00
(0.043) (0.022) (0.083) (0.062)
3 0.086 0.043 0.163 0.119 174.419 217.00-333.00
(0.034) 0.017) (0.064) (0.047)

high, and its inside dimensions are 2.286 cm (0.90 in.) wide and 1.016 cm (0.40
in.) high. Table 4-1-7 tabulates the characteristics of the standard rectangular

waveguides.

4-2 CIRCULAR WAVEGUIDES

A circular waveguide is a tubular, circular conductor. A plane wave propagating
through a circular waveguide results in a transverse electric (TE) or transerse mag-
netic (TM) mode. Several other types of waveguides, such as elliptical and reentrant
guides, also propagate electromagnetic waves.

4-2-1 Solutions of Wave Equations in Cylindrical
Coordinates

As described in Section 4-1 for rectangular waveguides, only a sinusoidal steady-
state or frequency-domain solution will be attempted for circular waveguides. A
cylindrical coordinate system is shown in Fig. 4-2-1.
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Figure 4-2-1 Cylindrical coordinates.

The scalar Helmholtz equation in cylindrical coordinates is given by

19 a¢> 1 9%y Py
—_— —_]t—_—F —= = -7~
ror <r or r? ap*  9z° vy (4-2-1)
Using the method of separation of variables, the solution is assumed in the form of
¥ = R(r)®(P)Z(z) (4-2-2)

where R(r) = a function of the r coordinate only
®(¢p) = a function of the ¢ coordinate only
Z(z) = a function of the z coordinate only

Substitution of Eq. (4-2-2) in (4-2-1) and division of the resultant by (4-2-2) yield
1 d a’R) | &0  1d4Z
——\r— )+ ===+ - = ¥* 4-2-3
/R dr (’ ar) " der "z Y (#-2-3)
Since the sum of the three independent terms is a constant, each of the three terms
must be a constant. The third term may be set equal to a constant y;:
&’z

Rt (4-2-4)
The solutions of this equation are given by
Z = Ae % + Bes’ (4-2-5)

where y, = propagation constant of the wave in the guide.
Inserting y? for the third term in the left-hand side of Eq. (4-2-3) and multi-

plying the resultant by r? yield

rd{ dR\ 1d® .,
Rdr(r dr)+<l)d¢2 o -vr=0 (4-2-6)

The second term is a function of ¢ only; hence equating the second term to a con-
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stant (—n?) yields

e
b n*®d (4-2-7)
The solution of this equation is also a harmonic function:
® = A, sin (nd) + B, cos (ne) (4-2-8)

Replacing the @ term by (—n?) in Eq. (4-2-6) and multiplying through by R, we
have

2 (r ‘;’g) + [(kerf = nR = 0 (4-2-9)

This is Bessel’s equation of order n in which
K+ y =y (4-2-10)

This equation is called the characteristic equation of Bessel’s equation. For a lossless
guide, the characteristic equation reduces to

B, = +Volue — k2 (4-2-11)
The solutions of Bessel’s equation are
R = C.Julk.r) + D,N,(k.r) (4-2-12)

where J,(k.r) is the nth-order Bessel function of the first kind, representing a stand-
ing wave of cos (k.r) for r < a as shown in Fig. 4-2-2. N,(k.r) is the nth-order Bes-
sel function of the second kind, representing a standing wave of sin (k.r) for r > a
as shown in Fig. 4-2-3.

Therefore the total solution of the Helmholtz equation in cylindrical coordi-
nates is given by

Y = [C,Juker) + D,Nufk.r)][A, sin (nd) + B, cos (nd)le*Pe* (4-2-13)

1.0 ]
0.8 JO [
06 \ SR
e P\r
e 0.4 3
:: 0.2 )() \ . O ~ -~
5 LA N NA NN/
g 0 \\ 7 )
> -02 \ \ ‘&_\)é \>‘4 o
_o4 NIPASS
B 2 4 6 8 10 12 14 16

Argument of J,, (k.r)

Figure 4-2-2 Bessel functions of the first kind.
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Figure 4-2-3 Bessel functions of the second kind.

At r = 0, however, k.r = 0; then the function N, approaches infinity, so D, = 0.
This means that at r = 0 on the z axis, the field must be finite. Also, by use of

trigonometric manipulations, the two sinusoidal terms become

Ay sin (ng) + B, cos (ng) = VA2 + B2 cos [,,d, ' tanﬂ@]

= F, cos (n¢) (4-2-14)
Finally, the solution of the Helmholtz equation is reduced to
¥ = Vo, (k.r) cos (np)e s (4-2-15)

4-2-2 TE Modes in Circular Waveguides

It is commonly assumed that the waves in a circular waveguide are propagating in
the positive z direction. Figure 4-2-4 shows the coordinates of a circular guide.
The TE,, modes in the circular guide are characterized by E. = 0. This means

0f—+4-
%) Figure 4-2-4 Coordinates of a circular

x waveguide.
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that the z component of the magnetic field H, must exist in the guide in order to have
electromagnetic energy transmission. A Helmholtz equation for H, in a circular
guide is given by

ViH. = y’H, (4-2-16)
Its solution is given in Eq. (4-2-15) by
H, = Ho.J.(k.r) cos (nd)e s (4-2-17)

which is subject to the given boundary conditions.
For a lossless dielectric, Maxwell’s curl equations in frequency domain are
given by

V x E = — jopH (4-2-18)
V x H = jweE (4-2-19)

In cylindrical coordinates, their components are expressed as

}aa_‘;z -2 o, (4-2-20)

aalj' - aa—l;:z = — jouH, (4-2-21)

22 k0~ 22 ot (4-2-22)
.}?(% - 2 jue, (4-2-23)

~ jB.H, — aa—}: = jweE, (4-2-24)
13 oy - - ?a% = jweE, (4-2-25)

When the differentiation d/9z is replaced by ( — jB,) and the z component of elec-
tric field E. by zero, the TE-mode equations in terms of H, in a circular waveguide
are expressed as

_ _Jop 1 0H.
E, PRy (4-2-26)
_ Jop 9H,
Eo =" (4-2-27)
E.=0 (4-2-28)
H, = P« Ol (4-2-29)

k2 or
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_ B Lot _
Ho = =3 1 54 (4-2-30)
H. = Ho.Ju(k.r) cos (nd)ePe? (4-2-31)

where k? = w?ue — B2 has been replaced.

The boundary conditions require that the ¢ component of the electric field Ey,
which is tangential to the inner surface of the circular waveguide at r = a, must van-
ish or that the » component of the magnetic field H,, which is normal to the inner
surface of r = a, must vanish. Consequently

0H,
= = S =0
E,=0atr =a ar | _
or
H =0atr =a 911_2 =0
ar

r=a

This requirement is equivalent to that expressed in Eq. (4-2-17):

J0H,
ar

= Ho.J.(k.a) cos (nd)e s = 0 (4-2-32)
Hence
Julka) =0 (4-2-33)

where J, indicates the derivative of J,.

Since the J, are oscillatory functions, the J, (k.a) are also oscillatory func-
tions. An infinite sequence of values of (k.a) satisfies Eq. (4-2-32). These points,
the roots of Eq. (4-2-32), correspond to the maxima and minima of the curves
Ju(k.a), as shown in Fig. 4-2-2. Table 4-2-1 tabulates a few roots of J,(k.a) for
some lower-order n.

TABLE 4-2-1 pth ZEROS OF J/(K.a) FOR TE,, MODES

14 n= 0 1 2 3 4 5

1 3.832 1.841 3.054 4.201 5.317 6.416
2 7.016 5.331 6.706 8.015 9.282 10.520
3 10.173 8.536 9.969 11.346 12.682 13.987
4 13.324 11.706 13.170

The permissible values of k. can be written

k. = X (4-2-34)
a
Substitution of Eq. (4-2-17) in Egs. (4-2-26) through (4-2-31) yields the complete
field equations of the TE,, modes in circular waveguides:

Er = EOr Jn (X"Pr
a

) sin (ng)e P:* (4-2-35)
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X, .
Ey = Eo¢J,',< ap r) cos (nd)e Ps? (4-2-36)
E.=0 (4-2-37)
H = - Eny Jn<X""r) cos (n)e Ps? (4-2-38)

Z, a

Eor  (Xn ) ,

Hy = ZO J,.< a,,r) sin (ng)e Ps* (4-2-39)
8
Xopr s

H, = Hy.J, Y cos (nd)e 7P« (4-2-40)
where Z, = E,/Hy = — E4/H, has been replaced for the wave impedance in the

guide and wheren = 0,1,2,3,...andp=1,2,3,4, .. ..

The first subscript n represents the number of full cycles of field variation in
one revolution through 27 rad of ¢. The second subscript p indicates the number of
zeros of E4—that is, J,(X,,r/a) along the radial of a guide, but the zero on the axis
is excluded if it exists.

The mode propagation constant is determined by Egs. (4-2-26) through
(4-2-31) and Eq. (4-2-34):

7 \2
b= orne— () o

The cutoff wave number of a mode is that for which the mode propagation constant
vanishes. Hence

X,
ke==%=wVpe (4-2-42)
The cutoff frequency for TE modes in a circular guide is then given by
X,
fi=—F— (4-2-43)
2ma’V pe
and the phase velocity for TE modes is
w Up

1)) _e— T —e—_, (4'2'44)
C B NV1I-(f/fF
where v, = 1/V e = ¢/V € is the phase velocity in an unbounded dielectric.
The wavelength and wave impedance for TE modes in a circular guide are
given, respectively, by

A
Ae= —— (4-2-45
Vi1 = (f/f) :
and
z, =k (4-2-46)

B Vi- (f/fy
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) . . .
~£ = wavelength in an unbounded dielectric

where A

n= \/;— = intrinsic impedance in an unbounded dielectric
€

Example 4-2-1: TE Mode in Circular Waveguide

A TE,, mode is propagating through a circular waveguide. The radius of the guide is
5 cm, and the guide contains an air dielectric (refer to Fig. 4-2-5).

Ar
=

P L
4 AN
0k >
AN y
] . .
Figure 4-2-5 Diagram for Example
x 4-2-1.

a. Determine the cutoff frequency.
b. Determine the wavelength A, in the guide for an operating frequency of 3 GHz.
¢. Determine the wave impedance Z, in the guide.

Solution

a. From Table 4-2-1 for TE;; mode, n = 1, p = 1, and X}, = 1.841 = k.a. The
cutoff wave number is

_1.841 _ 1.841

7 3xi107 36.82

ke

The cutoff frequency is
k. _ (36.82)(3 x 10%) _

ff=———= = 1.758 x 10° Hz
27V (o€ 2m
b. The phase constant in the guide is

Bs = Voluce — k2
= V(2r x 3 X 10447 x 1077 x 8.85 X 107'?) — (36.82)
= 50.9 rads/m

The wavelength in the guide is

27 6.28
A, =—=——-=123cm
* B, 50.

\O
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¢. The wave impedance in the guide is

wpo _ (2m X 3 X 10%)(4mr x 1077)

=465 Q
B, 50.9

Z, =

4-2-3 TM Modes in Circular Waveguides

The TM,, modes in a circular guide are characterized by H, = 0. However, the z
component of the electric field E, must exist in order to have energy transmission in
the guide. Consequently, the Helmholtz equation for E. in a circular waveguide is
given by

V2E. = ¥’E, (4-2-47)
Its solution is given in Eq. (4-2-15) by
E. = Eo.Juk.r) cos (nd)e Ps* (4-2-48)

which is subject to the given boundary conditions.
The boundary condition requires that the tangential component of electric field
E. at r = a vanishes. Consequently,

Jukea) = 0 (4-2-49)

Since J.(k.r) are oscillatory functions, as shown in Fig. 4-2-2, there are infinite
numbers of roots of J,(k.r). Table 4-2-2 tabulates a few of them for some lower-
order n.

TABLE 4-2-2 pth ZEROS OF J,(K-a) FOR T™,, MODES

D n= 0 1 2 3 4 5
1 2.405 3.832 5.136 6.380 7.588 8.771
2 5.520 7.106 8.417 9.761 11.065 12.339
3 8.645 10.173 11.620 13.015 14.372
4 11.792 13.324 14.796
For H. = 0 and 8/0z = — jB,, the field equations in the circular guide, after
expanding V X E = — jouH and V X H = jweE, are given by
— JBs OE;
, = = 4-2-50
E kZ or ( 50)
—JjBs 1 OE,
= = 4-2-51
Es k2 r o ( )
E. = Eq. (4-2-48) (4-2-52)
we 1 3E,
_ Jwe 1l oE (4-2-53)

"k r 3
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_ joe oE. a2
Hy X or (4-2-54)
Hz =0 (4-2'55)

where k7 = w’pe — B} has been replaced.

Differentiation of Eq. (4-2-48) with respect to z and substitution of the result
in Egs. (4-2-50) through (4-2-55) yield the field equations of TM,,, modes in a circu-
lar waveguide:

E = EOrJ,,(X : ’) cos (np)e7e? (4-2-56)
Xuph\ . iz
Ey = EogJs ) sio (nd)e 7Pe 4-2-57)
Xt sz
E, = Eo.J, ) cos (ndp)e7Pe (4-2-58)
H = J,.<X:1pr) sin (ng)e 7Pe? (4-2-59)
Hy J ( ;”r cos (ng)e Pe? (4-2-60)
=0 (4-2-61)
where Z, = E/H, = — E¢/ H, = B,/(we) and k. = X,,/a have been replaced and

wheren =0,1,2,3,...andp =1,2,3,4,....

Some of the TM-mode characteristic equations in the circular guide are identi-
cal to those of the TE mode, but some are different. For convenience, all are shown
here:

B, = \/ w*pe — <X:’>2 (4-2-62)
k=22 = 0V (4-2-63)
Xn

. - 4-2-64
fe - \/-”—e ( )
Y. (4-2-65)

B:  V1-(f/f)?

A
Ay = (4-2-66)
V1-— (fC/f)2

_ B, _ AN

Z, = Pl 1 (f) (4-2-67)

It should be noted that the dominant mode, or the mode of lowest cutoff frequency
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in a circular waveguide, is the mode of TE,, that has the smallest value of the
product, k.a = 1.841, as shown in Tables 4-2-1 and 4-2-2.

Example 4-2-2: Wave Propagation in Circular Waveguide

An air-filled circular waveguide has a radius of 2 cm and is to carry energy at a fre-
quency of 10 GHz. Find all the TE,, and TM,,, modes for which energy transmission is
possible.

Solution Since the physical dimension of the guide and the frequency of the wave re-
main constant, the product of (k.a) is also constant. Thus

2 X 10
kea = (w.V pogo)a = %(2 X 107%) = 4.18

Any mode having a product of (k.a) less than or equal to 4.18 will propagate the wave
with a frequency of 10 GHz. This is

ka =4.18
The possible modes are
TE(1.841) TMo:(2.405)
TE:(3.054) TM,1(3.832)
TEo:(3.832)

4-2-4 TEM Modes in Circular Waveguides

The transverse electric and transverse magnetic (TEM) modes or transmission-line
modes are characterized by

E.=H.=0

This means that the electric and magnetic fields are completely transverse to the di-

rection of wave propagation. This mode cannot exist in hollow waveguides, since it

requires two conductors, such as the coaxial transmission line and two-open-wire

line. Analysis of the TEM mode illustrates an excellent analogous relationship be-

tween the method of circuit theory and that of the field theory. Figure 4-2-6 shows

a coaxial line. )
Maxwell’s curl equations in cylindrical coordinates

VxE=—jouH (4-2-68)
V x H = jweE (4-2-69)

become
B.E, = wuH, (4-2-70)

B.Es = wuH, (4-2-71)
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Figure 4-2-6 Coordinates of a coaxial
line.

ad dEr

— -— = 4-2-72

or (rEo) ¢ ( )
B:H, = —weE, (4-2-73)
B.Hs = weE, (4-2-74)

9 oH, _

E;(rH¢) %6 =0 (4-2-75)

where d/dr = — jB,and E. = H, = 0 are replaced.

Substitution of Eq. (4-2-71) in (4-2-73) yields the propagation constant of the
TEM mode in a coaxial line:

B, = Ve (4-2-76)

which is the phase constant of the wave in a lossless transmission line with a dielec-
tric.

In comparing the preceding equation with the characteristic equation of the
Helmbholtz equation in cylindrical coordinates as given in Eq. (4-2-11) by

B: = Vwlue — kZ (4-2-77)

it is evident that

ke=10 (4-2-78)

This means that the cutoff frequency of the TEM mode in a coaxial line is zero,
which is the same as in ordinary transmission lines.
The phase velocity of the TEM mode can be expressed from Eq. (4-2-76) as

_w 1

v = B; = ﬁ (4-2-79)

which is the velocity of light in an unbounded dielectric.
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The wave impedance of the TEM mode is found from either Eqgs. (4-2-70) and
(4-2-73) or Egs. (4-2-71) and (4-2-74) as

n(TEM) = \/% (4-2-80)

which is the wave impedance of a lossless transmission line in a dielectric.
Ampere’s law states that the line integral of H about any closed path is exactly
equal to the current enclosed by that path. This is

%H cd€=1= Ioe.jBSZ = 2’7TrH¢ (4-2-81)

where I is the complex current that must be supported by the center conductor of a
coaxial line. This clearly demonstrates that the TEM mode can only exist in the two-
conductor system—not in the hollow waveguide because the center conductor does

not exist.
In summary, the properties of TEM modes in a lossless medium are as fol-

lows:

Its cutoff frequency is zero.

Its transmission line is a two-conductor system.

Its wave impedance is the impedance in an unbounded dielectric.
Its propagation constant is the constant in an unbounded dielectric.
Its phase velocity is the velocity of light in an unbounded dielectric.

Rk W=

4-2-5 Power Transmission in Circular Waveguides or
Coaxial Lines

In general, the power transmitted through circular waveguides and coaxial lines can
be calculated by means of the complex Poynting theorem described in Section 2-2.
For a lossless dielectric, the time-average power transmitted through a circular guide
can be given by

1 27 (a
Pe == f f (| Es|* + | E4|F]r dr do (4-2-82)
2z, ), J,
Z 2 (a
Py = ?gf f[[ H.[> + |Hy[*)r dr d (4-2-83)
0 0
E, . . .
where Z, = — = _Es_ wave impedance in the guide
Hy H,

a = radius of the circular guide

Substitution of Z, for a particular mode in Eq. (4-2-82) yields the power transmitted
by that mode through the guide.
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For TE,, modes, the average power transmitted through a circular guide is
given by
V1= (£ ([
p, = Y1 = (LI f f [E,P + |EsP)r dr d (4-2-84)
2n 0 %

where n = V u/e is the intrinsic impedance in an unbounded dielectric.
For TM,, modes, the average power transmitted through a circular guide is
given by

1
P, =
V1 = (f/f)

For TEM modes in coaxial lines, the average power transmitted through a
coaxial line or two-open-wire line is given by

f ’ f UEE + |EsfYdrds  (42-85)

1 27 ra
Py = — UE P + |Es|*]r dr do (4-2-86)
20 Jy Jo
If the current carried by the center conductor of a coaxial line is assumed to be
1. = lye™Pe? (4-2-87)

the magnetic intensity induced by the current around the center conductor is given
by Ampére’s law as

Hy = —— ¢ 2 (4-2-88)

The potential rise from the outer conductor to the center conductor is given by

a a 1 ]
V. = —J E.dr = —f nHydr = e/ <é>e""gz (4-2-89)
, A 2 a
The characteristic impedance of a coaxial line is
Yo (f
2-Ye2n(l) w250

where 7 = V u/e is the intrinsic impedance in an unbounded dielectric.
The power transmitted by TEM modes in a coaxial line can be expressed from
Eq. (4-2-86) as

B 1 2m b , B 7]1% b
P, = 55[0 f |nH, [ rdrdp = J—1In <;> (4-2-91)

Substitution of | V;| from Eq. (4-2-89) into Eq. (4-2-91) yields
Pe = iVolo (4-2-92)

This shows that the power transmission derived from the Poynting theory is the
same as from the circuit theory for an ordinary transmission line.
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4-2-6 Power Losses in Circular Waveguides
or Coaxial Lines

The theory and equations derived in Section 4-1-5 for TE and TM modes in rectan-
gular waveguides are applicable to TE and TM modes in circular guides. The power
losses for the TEM mode in coaxial lines can be computed from transmission-line
theory by means of

P = 2aP, (4-2-93)

where P, = power loss per unit length
P, = transmitted power
«a = attenuation constant

For a low-loss conductor, the attenuation constant is given by
1 \/E \/Z
J—— = + — -2
@=> (R I G C) (4-2-94)

4-2.7 Excitations of Modes in Circular Waveguides

As described earlier, TE modes have no z component of an electric field, and TM
modes have no z component of magnetic intensity. If a device is inserted in a circu-
lar guide in such a way that it excites only a z component of electric intensity, the
wave propagating through the guide will be the TM mode; on the other hand, if a
device is placed in a circular guide in such a manner that only the z component of
magnetic intensity exists, the traveling wave will be the TE mode. The methods of
excitation for various modes in circular waveguides are shown in Fig. 4-2-7.

Short-circuited Coaxial line

Figure 4-2-7 Methods of exciting vari-
ous modes in circular waveguides.

TMy; mode

A common way to excite TM modes in a circular guide is by a coaxial line as
shown in Fig. 4-2-8. At the end of the coaxial line a large magnetic intensity exists
in the ¢ direction of wave propagation. The magnetic field from the coaxial line will
excite the TM modes in the guide. However, when the guide is connected to the
source by a coaxial line, a discontinuity problem at the junction will increase the
standing-wave ratio on the line and eventually decrease the power transmission. It is
often necessary to place a turning device around the junction in order to suppress the
reflection.
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Single stub

Waveguide
slot

Coaxial line 7

(a)

Figure 4-2-8 Methods of exciting TM modes in a circular waveguide. (a) Coaxial
line with a slotted waveguide. (b) Coaxial line in series with a circular waveguide.

Single stub

Coaxial line /

()

0

Waveguide

TABLE 4-2-8 CHARACTERISTICS OF STANDARD CIRCULAR WAVEGUIDES

EIA® Cutoff frequency Recommended
designation Inside diameter for air-filled frequency range
wCe( ) in ¢cm (in.) waveguide in GHz for TE,;, mode in GHz
992 25.184 (9.915) 0.698 0.80-1.10
847 21.514 (8.470) 0.817 0.94-1.29
724 18.377 (7.235) 0.957 1.10-1.51
618 15.700 (6.181) 1.120 1.29-1.76
528 13.411 (5.280) 1.311 1.51-2.07
451 11.458 (4.511) 1.534 1.76-2.42
385 9.787 (3.853) 1.796 2.07-2.83
329 8.362 (3.292) 2.102 2.42-3.31
281 7.142 (2.812) 2.461 2.83-3.88
240 6.104 (2.403) 2.880 3.31-4.54
205 5.199 (2.047) 3.381 3.89-5.33
175 4.445 (1.750) 3.955 4.54-6.23
150 3.810 (1.500) 4.614 5.30-7.27
128 3.254 (1.281) 5.402 6.21-8.51
109 2.779  (1.094) 6.326 7.27-9.97
94 2.383 (0.938) 7.377 8.49-11.60
80 2.024 (0.797) 8.685 9.97-13.70
69 1.748 (0.688) 10.057 11.60-15.90
59 1.509 (0.594) 11.649 13.40-18.40
50 1.270 (0.500) 13.842 15.90-21.80
44 1.113  (0.438) 15.794 18.20-24.90
38 0.953 (0.375) 18.446 21.20-29.10
33 0.833 (0.328) 21.103 24.30-33.20
28 0.714 (0.281) 24.620 28.30-38.80
25 0.635 (0.250) 27.683 31.80-43.60
22 0.556 (0.219) 31.617 36.40-49.80
19 0.478 (0.188) 36.776 42.40-58.10
17 0.437 (0.172) 40.227 46.30-63.50
14 0.358 (0.141) 49.103 56.60-77.50
13 0.318 (0.125) 55.280 63.50-87.20
11 0.277 (0.109) 63.462 72.70-99.70
9 0.239 (0.094) 73.552 84.80-116.00

2Electronic Industry Association

® Circular Waveguide
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4.2-8 Characteristics of Standard Circular
Waveguides

The inner diameter of a circular waveguide is regulated by the frequency of the sig-
nal being transmitted. For example: at X-band frequencies from 8 to 12 GHz, the in-
ner diameter of a circular waveguide designated as EIA WC(94) by the Electronic
Industry Association is 2.383 cm (0.938 in.). Table 4-2-8 tabulates the characteris-
tics of the standard circular waveguides.

4-3 MICROWAVE CAVITIES

In general, a cavity resonator is a metallic enclosure that confines the electromag-
netic energy. The stored electric and magnetic energies inside the cavity determine
its equivalent inductance and capacitance. The energy dissipated by the finite con-
ductivity of the cavity walls determines its equivalent resistance. In practice, the
rectangular-cavity resonator, circular-cavity resonator, and reentrant-cavity res-
onator are commonly used in many microwave applications.

Theoretically a given resonator has an infinite number of resonant modes, and
each mode corresponds to a definite resonant frequency. When the frequency of an
impressed signal is equal to a resonant frequency, a maximum amplitude of the
standing wave occurs, and the peak energies stored in the electric and magnetic
fields are equal. The mode having the lowest resonant frequency is known as the
dominant mode.

4-3-1 Rectangular-Cavity Resonator

The electromagnetic field inside the cavity should satisfy Maxwell’s equations, sub-
ject to the boundary conditions that the electric field tangential to and the magnetic
field normal to the metal walls must vanish. The geometry of a rectangular cavity is
illustrated in Fig. 4-3-1,

The wave equations in the rectangular resonator should satisfy the boundary
condition of the zero tangential E at four of the walls. It is merely necessary to
choose the harmonic functions in z to satisfy this condition at the remaining two end

V| i L
//
7/
v
7
//
s d
b 7
%

0 rd x  Figure 4-3-1 Coordinates of a rectan-

a——» .

gular cavity.
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walls. These functions can be found if

H. = Ho, cos (?) cos (?) sin (%) (TEmnp) (4-3-1)

where m = 0, 1, 2, 3, . . . represents the number of the half-wave periodicity in
the x direction
n=20,1,2,3, ... represents the number of the half-wave periodicity in
the y direction
p=1,2,3,4, ... represents the number of the half-wave periodicity in
the z direction
and
. (mmx\ .
E. = Eg sin (—) sin (@) Ccos (M) (TMnp) (4-3-2)
a b d
wherem =1,2,3,4, ...
n=1,2,3,4,...
p=0,1,2,3,...

The separation equation for both TE and TM modes is given by

R RC

For a lossless dielectric, k> = w?ue; therefore, the resonant frequency is expressed

by
1 m\* (n\* (P}’ N
= 5 ,—,LLE \[<a> + (b) + <d> (TE i, TMop) (4-3-4)

For a > b < d, the dominant mode is the TE;q; mode.

In general, a straight-wire probe inserted at the position of maximum electric
intensity is used to excite a desired mode, and the loop coupling placed at the posi-
tion of maximum magnetic intensity is utilized to launch a specific mode. Figure
4-3-2 shows the methods of excitation for the rectangular resonator. The maximum
amplitude of the standing wave occurs when the frequency of the impressed signal is
equal to the resonant frequency.

‘T Input
E E

H ] nput H >~~~ Figure 432 Methods of exciting wave

modes in a resonator.

4-3-2 Circular-Cavity Resonator
and Semicircular-Cavity Resonator

Circular-cavity resonator. A circular-cavity resonator is a circular wave-
guide with two ends closed by a metal wall (see Fig. 4-3-3). The wave function in
the circular resonator should satisfy Maxwell’s equations, subject to the same
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|
|
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/’/OT R
/):— y Ty
< N y
¢ , Figure 4-3-3 Coordinates of a circular
x resonator.

boundary conditions described for a rectangular-cavity resonator. It is merely neces-
sary to choose the harmonic functions in z to satisfy the boundary conditions at the
remaining two end walls. These can be achieved if

X .
H., = Hy.J, (—a’i) cos (n¢) sin (I?) (TE.p) (4-3-5)
where n = 0, 1, 2, 3, . . . is the number of the periodicity in the ¢ direction
p=1,2,3,4, .. .is the number of zeros of the field in the radial direction
q=1,2,3,4, ... is the number of half-waves in the axial direction
J. = Bessell’s function of the first kind
H,, = amplitude of the magnetic field
and
X
E, = Ey.J, (—alr) cos (nd) cos (%E) (TM,,,,) (4-3-6)
wheren =0,1,2,3, ...
p=1,2,34,...
q=0,1,2,3,...
Eo. = amplitude of the electric field
The separation equations for TE and TM modes are given by
1 \2 2
k? = (X""> + (1’—’) (TE mode) 4-3-7)
a d
5 X\’ qm\?
k* = - + T (TM mode) (4-3-8)

Substitution of k? = w?pe in Eqs. (4-3-7) and (4-3-8) yields the resonant frequen-
cies for TE and TM modes, respectively, as

T e
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f = 27’\1/_\/<X ) + (‘1;’) (TM) (4-3-10)

It is interesting to note that the TM,,o mode is dominant where 2a > d, and that the
TE:1; mode is dominant when d = 2a.

Semicircular-cavity resonator. A semicircular-cavity resonator is shown
in Fig. 4-3-4. The wave function of the TE,,, mode in the semicircular resonator can
be written

H, = HW,,(%) cos (nd) sin <%{z> (TE mode) (4-3-11)

wheren =0, 1, 2, 3, .
p=12,3,4,.
qg=1,2,3,4,
a = radius of the sem1c1rcu1ar -cavity resonator
d = length of the resonator

Figure 4-3-4 Semicircular resonator.

The wave function of the TM,,, mode in the semicircular-cavity resonator can be
written

X, .
E, = End, <7”r) sin (n¢) cos (%Tz) (TM mode) (4-3-12)

where n =
p=
q=Vu1,
With the separation equations given in Eqs. (4-3-7) and (4-3-8), the equations of
resonant frequency for TE and TM modes in a semicircular-cavity resonator are the
same as in the circular—cavity resonator. They are repeated as follows:

_ / 5 qma
f = 27m\/_ (Xop)? + (d) (TE,,, mode) (4-3-13)
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f, = m (an) + (7) (TM,,pq mode) (4-3-14)

However, the values of the subscripts n, p, and g differ from those for the circular-
cavity resonator. Also, it must be emphasized that the TE;;; mode is dominant if
d > a and that the TM,;;0 mode is dominant if d < a.

4-3-3 Q Factor of a Cavity Resonator
The quality factor Q is a measure of the frequency selectivity of a resonant or an-

tiresonant circuit, and it is defined as

maximum energy stored wW
= = — -3-1
Q=2m energy dissipated per cycle P (4-3-15)

where W is the maximum stored energy and P is the average power loss.

At resonant frequency, the electric and magnetic energies are equal and in
time quadrature. When the electric energy is maximum, the magnetic energy is zero
and vice versa. The total energy stored in the resonator is obtained by integrating
the energy density over the volume of the resonator:

We=f§|E|2dv=Wm=f%|H|2dv=W (4-3-16)

where | E| and | H | are the peak values of the field intensities.

The average power loss in the resonator can be evaluated by integrating the
power density as given in Eq. (2-5-12) over the inner surface of the resonator.
Hence

P= % J |H,|? da (4-3-17)

where H, is the peak value of the tangential magnetic intensity and R; is the surface
resistance of the resonator.

Substitution of Eqs. (4-3-16) and (4-3-17) in Eq. (4-3-15) yields
opf,|H[ dv
R, [, |H.|* da

Since the peak value of the magnetic intensity is related to its tangential and normal
components by

0= (4-3-18)

|H? = |H [ + [H,[

where H, is the peak value of the normal magnetic intensity, the value of | H,|* at the
resonator walls is approximately twice the value of | H | averaged over the volume.
So the Q of a cavity resonator as shown in Eq. (4-3-18) can be expressed approxi-
mately by

0= wp (volume)

~ 2R(surface areas) (4-3-19)
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An unloaded resonator can be represented by either a series or a parallel resonant
circuit. The resonant frequency and the unloaded Qo of a cavity resonator are

= ——— -3-2

f 20 VLC (4-3-20)
_ woL

0o = R 4-3-21)

If the cavity is coupled by means of an ideal N:1 transformer and a series inductance
L, to a generator having internal impedance Z,, then the coupling circuit and its
equivalent are as shown in Fig. 4-3-5.

N:1
R
L
C
T
(a) (b)

Figure 4-3-5 Cavity coupled to a generator. (a) Coupling circuit. (b) Equivalent
circuit.
The loaded Q¢ of the system is given by

woL

=0 21| < |R + N2 -3-
TN for |[N2L,| < |R + N?Z,| (4-3-22)

o

The coupling coefficient of the system is defined as

N?Z,

K = R (4-3-23)
and the loaded Q, would become
_ woL _ Qo
= Ra+K T+K (4-3-24)
Rearrangement of Eq. (4-3-24) yields
1 1 1
— = -—+ 4-3-25
Q€ QO Qext ( )

where Qcw = Qo/K = woL/(KR) is the external Q.
There are three types of coupling coefficients:

1. Critical coupling: If the resonator is matched to the generator, then
K=1 (4-3-26)
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The loaded Q¢ is given by
Qe = 3Qen = 100 (4-3-27)

2. Overcoupling: If K > 1, the cavity terminals are at a voltage maximum in the
input line at resonance. The normalized impedance at the voltage maximum is
the standing-wave ratio p. That is

K=p (4-3-28)
The loaded Q¢ is given by
=D
Qe = T+ (4-3-29)

3. Undercoupling: If K < 1, the cavity terminals are at a voltage minimum and
the input terminal impedance is equal to the reciprocal of the standing-wave ra-
tio. That is,

1
K=- (4-3-30)
p
The loaded Q¢ is given by

Qe Qo (4-3-31)

__p

p+1
The relationship of the coupling coefficient K and the standing-wave ratio is
shown in Fig. 4-3-6.

Undercoupled
Overcoupled

Standing-wave ratio p
-

Figure 4-3-6 Coupling coefficient ver-
Coupling coefficient K sus standing-wave ratio.

4-4 MICROWAVE HYBRID CIRCUITS

A microwave circuit ordinarily consists of several microwave devices connected in
some way to achieve the desired transmission of a microwave signal. The intercon-
nection of two or more microwave devices may be regarded as a microwave junc-
tion. Commonly used microwave junctions include such waveguide tees as the E-
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plane tee, H-plane tee, magic tee, hybrid ring (rat-race circuit), directional coupler,
and the circulator. This section describes these microwave hybrids, which are shown
in Fig. 4-4-1.

A two-port network is shown in Fig. 4-4-2. From network theory a two-port
device can be described by a number of parameter sets, such as the H, Y, Z, and
ABCD parameters.

H parameters: [‘I/l] = [hn hlZ][ll] Vi = huly + haVa 4-4-1)
2

= tha hn]lV2 L = hyli + huaVs (4-4-2)
11] = [yn ylz][vl] L =yaVi + yuhs (4-4-3)

Y parameters:
P [12 = L1ya Y= V, L= Y2 Vi + y22V1 (4-4-4)

Collinear arms

Port 2 A

E arm
Port 1 Port 1 |

Port 3
Port 3

Collinear arms Port 2 , - H arm

(a) E-plane tee (b) H-plane tee

Arm
S
Arm 1 Arm 2
Arm P
(d) Hybrid ring

(c) Magic tee

Port 4
(2n+])k f \
I«——'—‘—j
Port 1 Port 3
O .o -~ @ °
Ol ivrat wall O 2
NS Port 2
Coupling holes

(e) Direcyional coupler (f) Circulator

Figure 4-4-1 Microwave hybrids. (a) E-plane tee. (b) H-plane tee. (c) Magic tee.
(d) Hybrid ring. (e) Directional coupler. (f) Circulator.
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I
. I 2 +
v Two-port v,
! device
— Qe Y o T
Figure 4-4-2 Two-port network.

7 parameters: [Vl] = lel 212] [11] Vi=zuli + ziul» (4—4—5)

P ’ V2 = LZan Zn 12 V2 = 22111 + 22212 (4—4—6)

|l =1]A B V2 Vi = AV, — BI, (4-4-7)

ABCD parameters: [11] = [C D][—Iz] I, = CV, — DI, (4-4-8)

All these network parameters relate total voltages and total currents at each of the
two ports. For instance,

hy = % (short circuit) (4-4-9)
1 ly=0

hp = %’- (open circuit) (4-4-10)
2 Lh=0

If the frequencies are in the microwave range, however, the H, Y, and Z parameters
cannot be measured for the following reasons:

1. Equipment is not readily available to measure total voltage and total current at
the ports of the network.

2. Short and open circuits are difficult to achieve over a broad band of frequen-
cies.

3. Active devices, such as power transistors and tunnel diodes, frequently will not
have stability for a short or open circuit.

Consequently, some new method of characterization is needed to overcome these
problems. The logical variables to use at the microwave frequencies are traveling
waves rather than total voltages and total currents. These are the S parameters,
which are expressed as

‘ by = Sua + Sna (4-4-11a)
“ by = Snai + Snaz (4-4-11b)

Figure 4-4-3 shows the S parameters of a two-port network.

NN 0 4@ NN
S Sia -0~
Z,
Sxn S Q
AN by by AN Figure 4-4-3 Two-port network.
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4-4-1 Waveguide Tees

As noted, waveguide tees may consist of the E-plane tee, H-plane tee, magic tee,
hybrid rings, corners, bends, and twists. All such waveguide components are dis-
cussed in this section.

Tee junctions. In microwave circuits a waveguide or coaxial-line junction
with three independent ports is commonly referred to as a tee junction. From the S-
parameter theory of a microwave junction it is evident that a tee junction should be
characterized by a matrix of third order containing nine elements, six of which
should be independent. The characteristics of a three-port junction can be explained
by three theorems of the tee junction. These theorems are derived from the equiva-

lent-circuit representation of the tee junction. Their statements follow

1. A short circuit may always be placed in one of the arms of a three-port junc-
tion in such a way that no power can be transferred through the other two
arms.

2. If the junction is symmetric about one of its arms, a short circuit can always be
placed in that arm so that no reflections occur in power transmission between
the other two arms. (That is, the arms present matched impedances.)

3. It is impossible for a general three-port junction of arbitrary symmetry to
present matched impedances at all three arms.

The E-plane tee and H -plane tee are described below.

E-plane tee (series tee). An E-plane tee is a waveguide tee in which the
axis of its side arm is parallel to the E field of the main guide (see Fig. 4-4-4). If the
collinear arms are symmetric about the side arm, there are two different transmis-
sion characteristics (see Fig. 4-4-5). It can be seen from Fig. 4-4-4 that if the E-
plane tee is perfectly matched with the aid of screw tuners or inductive or capacitive
windows at the junction, the diagonal components of the scattering matrix, Si1, S,
and Si3, are zero because there will be no reflection. When the waves are fed into
the side arm (port 3), the waves appearing at port 1 and port 2 of the collinear arm
will be in opposite phase and in the same magnitude. Therefore

513 = - st (4-4-12)
It should be noted that Eq. (4-4-12) does not mean that S5 is always positive and Sa

Port 3

Port 2

Collinear
arms
Port1 E Figure 4-4-4 E-plane tee
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Out
> Port 3
Port 1 I Port 2
In | Out
(a)
In
- Port 3
Port 1 IT Port 2
Out Out Figure 4-4-5 Two-way transmission of
) E-plane tee. (a) Input through main arm.
(b) (b) Input from side arm.

is always negative. The negative sign merely means that Si; and S»; have opposite
signs. For a matched junction, the S matrix is given by

0 S S
S = S21 0 S23 (4—4-13)
S31 S32 0

From the symmetry property of S matrix, the symmetric terms in Eq. (4-4-13) are
equal and they are

Siz = Su Siz = S S = S» (4-4-14)

From the zero property of S matrix, the sum of the products of each term of any
column (or row) multiplied by the complex conjugate of the corresponding terms of
any other column (or row) is zero and it is

SuSh + SuSh + SuS% = (4-4-15)
Hence
SiSH =0 (4-4-16)

This means that either Si; or $3;, or both, should be zero. However, from the unity
property of S matrix, the sum of the products of each term of any one row (or
column) multiplied by its complex conjugate is unity; that is,

SuSE + SuSH =1 (4-4-17)
SuSH + 8SuSh =1 (4-4-18)
SuSh + SuS% =1 (4-4-19)
Substitution of Eq. (4-4-14) in (4-4-17) results in
|S2lP=1—[Suf =1-[8xsf (4-4-20)

Equations (4-4-19) and (4-4-20) are contradictory, for if S;3 = 0, then Su; is also
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zero and thus Eq. (4-4-19) is false. In a similar fashion, if §»3 = 0, then S,3 becomes
zero and therefore Eq. (4-4-20) is not true. This inconsistency proves the statement
that the tee junction cannot be matched to the three arms. In other words, the diago-
nal elements of the S matrix of a tee junction are not all zeros.

In general, when an E-plane tee is constructed of an empty waveguide, it is
poorly matched at the tee junction. Hence S; # O if i = j. However, since the

collinear arm is usually symmetric about the side arm, |Si3| = |Sx]| and i, = Sx.
Then the S matrix can be simplified to
Su S1i2 Si3
S=|85a S —Si (4-4-21)
S|3 —S13 S33

H-plane tee (shunt tee). An H-plane tee is a waveguide tee in which the
axis of its side arm is “shunting” the E field or parallel to the H field of the main
guide as shown in Fig. 4-4-6.

Figure 4-4-6 H-plane tee.

It can be seen that if two input waves are fed into port 1 and port 2 of the
collinear arm, the output wave at port 3 will be in phase and additive. On the other
hand, if the input is fed into port 3, the wave will split equally into port 1 and port 2
in phase and in the same magnitude. Therefore the S matrix of the H-plane tee is
similar to Eqs. (4-4-13) and (4-4-21) except that

Si3 = S (4-4-22)
4-4-2 Magic Tees (Hybrid Tees)

A magic tee is a combination of the E-plane tee and H-plane tee (refer to Fig.
4-4-7). The magic tee has several characteristics:

Port 3
Port 2

Collinear

arms E arm

Port 4
H arm

Port 1 Figure 4-4-7 Magic tee.
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1. If two waves of equal magnitude and the same phase are fed into port 1 and
port 2, the output will be zero at port 3 and additive at port 4.

2. If a wave is fed into port 4 (the H arm), it will be divided equally between port
1 and port 2 of the collinear arms and will not appear at port 3 (the E arm).

3. If a wave is fed into port 3 (the E arm), it will produce an output of equal mag-
nitude and opposite phase at port 1 and port 2. The output at port 4 is zero.
That iS, S43 = S34 =0.

4. If a wave is fed into one of the collinear arms at port 1 or port 2, it will not
appear in the other collinear arm at port 2 or port 1 because the E arm causes a
phase delay while the H arm causes a phase advance. That is, S;2 = S5, = 0.

Therefore the S matrix of a magic tee can be expressed as

0 0 S Su
0 0 Sx»n Su
= 4-4-23
S Sn S» 0 O ( )
Sa S 0 O

The magic tee is commonly used for mixing, duplexing, and impedance measure-
ments. Suppose, for example, there are two identical radar transmitters in equipment
stock. A particular application requires twice more input power to an antenna than
either transmitter can deliver. A magic tee may be used to couple the two transmit-
ters to the antenna in such a way that the transmitters do not load each other. The
two transmitters should be connected to ports 3 and 4, respectively, as shown in
Fig. 4-4-8. Transmitter 1, connected to port 3, causes a wave to emanate from port
1 and another to emanate from port 2; these waves are equal in magnitude but oppo-
site in phase. Similarly, transmitter 2, connected to port 4, gives rise to a wave at
port 1 and another at port 2, both equal in magnitude and in phase. At port 1 the
two opposite waves cancel each other. At port 2 the two in-phase waves add to-
gether; so double output power at port 2 is obtained for the antenna as shown in Fig.
4-4-8.

To antenna
A Port 2
Transmitter | f
.4 v
Port 3 Transmitter 2
Port 4
Port 1 i T Figure 4-4-8 Magic tee-coupled trans-
mitters to antenna.

4-4-3 Hybrid Rings (Rat-Race Circuits)

A hybrid ring consists of an annular line of proper electrical length to sustain stand-
ing waves, to which four arms are connected at proper intervals by means of series
or parallel junctions. Figure 4-4-9 shows a hybrid ring with series junctions.
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Port 4 Port 1

Port 3 Port 2 Figure 4-4-9 Hybrid ring.

The hybrid ring has characteristics similar to those of the hybrid tee. When a
wave is fed into port 1, it will not appear at port 3 because the difference of phase
shifts for the waves traveling in the clockwise and counterclockwise directions is
180°. Thus the waves are canceled at port 3. For the same reason, the waves fed into
port 2 will not emerge at port 4 and so on.

The S matrix for an ideal hybrid ring can be expressed as

0 512 0 Sl4
Sn 0 S» O
= 4-4-
S 0 Su 0 Su (4-4-24)
Sa 0 Ss O

It should be noted that the phase cancellation ocurs only at a designated frequency
for an ideal hybrid ring. In actual hybrid rings there are small leakage couplings,
and therefore the zero elements in the matrix of Eq. (4-4-24) are not quite equal to
zero.

4-4-4 Waveguide Corners, Bends, and Twists

The waveguide corner, bend, and twist are shown in Fig. 4-4-10. These waveguide
components are normally used to change the direction of the guide through an arbi-
trary angle.

In order to minimize reflections from the discontinuities, it is desirable to have
the mean length L between continuities equal to an odd number of quarter-wave-
lengths. That is,

L=Qn+ 1)%" (4-4-25)

where n = 0, 1, 2, 3, . . ., and A, is the wavelength in the waveguide. If the mean
length L is an odd number of quarter wavelengths, the reflected waves from both
ends of the waveguide section are completely canceled. For the waveguide bend, the
minimum radius of curvature for a small reflection is given by Southworth [2] as

R=1.5b for an E bend (4-4-26)
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R =1.5a for an H bend (4-4-27)

where a and b are the dimensions of the waveguide bend as illustrated in Fig.
4-4-10.

=]

(a) (b)

©) (@

Figure 4-4-10 Waveguide corner, bend, and twist. (a) E-plane corner.
(b) H-plane corner. (c) Bend. (d) Continuous twist.

4-5 DIRECTIONAL COUPLERS

A directional coupler is a four-port waveguide junction as shown in Fig. 4-5-1. It
consists of a primary waveguide 1-2 and a secondary waveguide 3—4. When all
ports are terminated in their characteristic impedances, there is free transmission of
power, without reflection, between port 1 and port 2, and there is no transmission of
power between port 1 and port 3 or between port 2 and port 4 because no coupling
exists between these two pairs of ports. The degree of coupling between port 1 and
port 4 and between port 2 and port 3 depends on the structure of the coupler.

The characteristics of a directional coupler can be expressed in terms of its
coupling factor and its directivity. Assuming that the wave is propagating from port
1 to port 2 in the primary line, the coupling factor and the directivity are defined,

Primary waveguide
Port 1 Port 2
Coupling °©
device
Port 3 ‘ Port 4
Secondary waveguide Figure 4-5-1 Directional coupler.
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respectively, by

Coupling factor (dB) = 10 log;o% 4-5-1)

4

Directivity (dB) = 10 log,o% (4-5-2)

3

where P = power input to port 1
P; = power output from port 3
P, = power output from port 4

It should be noted that port 2, port 3, and port 4 are terminated in their char-
acteristic impedances. The coupling factor is a measure of the ratio of power levels
in the primary and secondary lines. Hence if the coupling factor is known, a fraction
of power measured at port 4 may be used to determine the power input at port 1.
This significance is desirable for microwave power measurements because no distur-
bance, which may be caused by the power measurements, occurs in the primary
line. The directivity is a measure of how well the forward traveling wave in the pri-
mary waveguide couples only to a specific port of the secondary waveguide. An
ideal directional coupler should have infinite directivity. In other words, the power
at port 3 must be zero because port 2 and port 4 are perfectly matched. Actually,
well-designed directional couplers have a directivity of only 30 to 35 dB.

Several types of directional couplers exist, such as a two-hole directional
couler, four-hole directional coupler, reverse-coupling directional coupler
(Schwinger coupler), and Bethe-hole directional coupler (refer to Fig. 4-5-2). Only
the very commonly used two-hole directional coupler is described here.

’4—%‘ -»Il ’ |L<— a »te—p —rfeg ->ll
O mHemi 1
[ | 1
(a) (b)
Coupling holes N 4 Secondary Rotated

waveguide secondary

Primary waveguide
() )
Figure 4-5-2 Different directional couplers. (a) Two-hole directional coupler.

(b) Four-hole directional coupler. (¢) Schwinger coupler. (d) Bethe-hole directional
coupler.
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4-5-1 Two-Hole Directional Couplers

A two-hole directional coupler with traveling waves propagating in it is illustrated in
Fig. 4-5-3. The spacing between the centers of two holes must be

A
L=Q2n+ I)Zg (4-5-3)
where n is any positive integer.
L=@n+D X
=(2n ) 4,
Primary waveguide
Port] ———————— > — ————— —— Port 2
M Mi
-+ —— N — —
Port3 Canceled _ _ A _, Added Port 4
~ - Figure 4-5-3 Two-hole directional
Secondary waveguide coupler.

A fraction of the wave energy entered into port 1 passes through the holes and
is radiated into the secondary guide as the holes act as slot antennas. The forward
waves in the secondary guide are in the same phase, regardless of the hole space,
and are added at port 4. The backward waves in the secondary guide (waves are pro-
gressing from right to left) are out of phase by (2L/A,)27 rad and are canceled at
port 3.

4-5-2 S Matrix of a Directional Coupler

In a directional coupler all four ports are completely matched. Thus the diagonal ele-
ments of the S matrix are zeros and )

Si=82=8:3=8Su=0 (4-5-4)
As noted, there is no coupling between port 1 and port 3 and between port 2 and
port 4. Thus
S3 =831 =84=8=0 (4-5-5)
Consequently, the S matrix of a directional coupler becomes
0 S12 0 Sl4
Su 0 S» 0
S = 4-5-6
0 Sz 0 S (4-5-6)
Sa 0 Ss O

Equation (4-5-6) can be further reduced by means of the zero property of the S ma-
trix, so we have

SuSE + §uSE =0 (4-5-7)
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$u8% + SuSE=0
Also from the unity property of the S matrix, we can write
SeSH + SusSt =1
Equations (4-5-7) and (4-5-8) can also be written
Sz ][ Sie] = |32 S|
|Sat [1823] = | Sar[] s
Since S12 = S21, S1a = Sa1, S = S32, and Si = Sa3, then

|Siz| = | S|

|1 = [ 8]
Let

S2=8u=p

where p is positive and real. Then from Eq. (4-5-8)
p(S%H + Su) =0
Let
Su=84=Jjg
where ¢ is positive and real. Then from Eq. (4-5-9)
pPtq=1

The S matrix of a directional coupler is reduced to

0 p 0 jg
g=|?7 0 O
0 jg 0 p
jg 0 p 0

Chap. 4

(4-5-8)

(4-5-9)

(4-5-10)
(4-5-11)

(4-5-12)
(4-5-13)

(4-5-14)

(4-5-15)

(4-5-16)

(4-5-17)

(4-5-18)

Example 4-5-1: Directional Coupler

A symmetric directional coupler with infinite directivity and a forward attenuation of
20 dB is used to monitor the power delivered to a load Z, (see Fig. 4-5-4). Bolometer
1 introduces a VSWR of 2.0 on arm 4; bolometer 2 is matched to arm 3. If bolometer 1

1 2
Generator ( A | 20dB |

|

i |

| | SWR=120

i |

| | l

= @ O
3 |4
Bolometer 2 Bolometer 1

Figure 4-5-4 Power measurements by directional coupler.

Z,
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reads 8 mW and bolometer 2 reads 2 mW, find: (a) the amount of power dissipated in
the load Z¢; (b) the VSWR on arm 2.

Solution The wave propagation in the directional coupler is shown in Fig. 4-5-5.

r SWR = 2.0

Port 1 Port 2

— 900 mW 900 mW—>3
- 100mW— 3 °°

<
<

Generator

9 mW——
7

- 1 mW
2mWA | mW (T)Smw

Port 4

SWR =20

Figure 4.5-5 Wave propagation in the directional coupler.
a. Power dissipation at Z,.

1. The reflection coefficient at port 4 is

p—1 2-1 1

||=p+1=2+1=3

2. Since the incident power and reflected power are related by
P~ =P*|T'P

where P* = incident power and P -~ = reflected power, then

1 [P | P
lFI_3_ P- N8+ p-

The incident power to port 4 is P{ = 9 mW, and the reflected power from port
4is P; = 1 mW.

3. Since port 3 is matched and the bolometer at port 3 reads 2 mW, then 1 mW
must be radiated through the holes.

4. Since 20 dB is equivalent to a power ratio of 100:1, the power intput at port 1 is
given by

P, = 100P; = 900 mW
and the power reflected from the load is
P; =100 X (1 mW) = 100 mW
5. The power dissipated in the load is
P, = P — P; =900 — 100 = 800 mW
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b. The reflection coefficient is calculated as

{0 1
T} = Pt Vo900 3

Then the VSWR on arm 2 is

4-5-3 Hybrid Couplers

Hybrid couplers are interdigitated microstrip couplers consisting of four parallel strip
lines with alternate lines tied together. A single ground plane, a single dielectric,
and a single layer of metallization are used. This type of coupler, called a Lange hy-
brid coupler {3}, has four ports, as shown in Fig. 4-5-6.

i

Figure 4-5-6 Lange hybrid coupler.

A signal wave incident in port 1 couples equal power into ports 2 and 4, but
none into port 3. There are two basic types of Lange couplers: 180° hybrids and 90°
(quadrature) hybrids. The latter are also called 3-dB directional couplers.

Hybrid couplers are frequently used as components in microwave systems or
subsystems such as attenuators, balanced amplifiers, balanced mixers, modulators,
discriminators, and phase shifters. The hybrid has a directivity of over 27 dB, a re-
turn loss of over 25 dB, an insertion loss of less than 0.13 dB, and an imbalance of
less than 0.25 dB over a 40% bandwidth.

In modern microwave circuit design, Lange hybrid couplers are commonly
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used in balanced amplifier circuitry for high-power and broad-bandwidth applica-
tions, as shown in Fig. 4-5-7.

Single-stage or cascaded double-stage GaAs MESFET chips are connected in
parallel to two 3-dB and 90-degree Lange hybrid couplers. Their basic relationship
can be expressed by the following three equations:

Su = %(Slla - S]lb) (4'5‘19)
Sy = %(Szza - Szzb) (4'5'20)

and
Gain = ISZI IZ = HSzm + S2|b|2 (4—5-21)

where a and b indicate the two GaAs MESFET chips, and 1 and 2 refer to the input
and output ports, respectively. The VSWRs of the balanced amplifier can be ex-
pressed as

1+ |Su|

VSWR = = [Su] for the input port (4-5-22)
- 11
and
1 +1S
VSWR = L+ [Sa| for the output port (4-5-23)
1 — |Sz]
GaAs MESFET a
Input 1! i2 i {
pog/er : | / | N | (4:
T |
= (1 — ) ;
; i 11a | : 50 Q2
| j : |
| | | |
| i 1 ' T
i
| ; 1 | |
|
! L Sus ! ‘
RVEEY RV
L0
3 : Lan%e : 4 K"j : Lange : Output
50 Q | coupler I | coupler | power

GaAs MESFET »

Figure 4-5-7 Balanced amplifier with Lange couplers.

Theoretically, if the two GaAs MESFET chips (or four chips in a double-stage
amplifier circuit) are identical, the amplifier is balanced and its VSWR will be unity.
Practically, however, characteristics of the two GaAs MESFET chips are not actu-
ally measured and they may not be the same. When their characteristics are differ-
ent, the amplifier will not be balanced and manual tuning will be needed to balance
it. Therefore, for mass production it is necessary to characterize the GaAs MESFET
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chips in advance before placing them in the microwave integrated circuit in order to
minimize the tuning work, reduce the production cost, and increase the hybrid re-
producibility.

Example 4-5-2: Operation of a Balanced Amplifier
A GaAs MESFET balanced amplifier with two Lange couplers has the following

parameters:
S parameters: Siia = Sinp
S22 = 8o
Input signal power: Pn = 200 mW
Power gain of each GaAs chip: Gain = 10 dB

Determine: (a) the input and output VSWRs; (b) the output power in watts; (c) the lin-
ear output power gain in dB.

Solution

a. From Eqs. (4-5-22) and (4-5-23), the input and output VSWRs are unity.
b. The output power is

P =200 X 10 X 2 = 4000 mW = 4 W
¢. Because two GaAs chips are in parallei, the linear output power gain is
Gain = 10 log (2) = 3 dB

4-6 CIRCULATORS AND ISOLATORS

Both microwave circulators and microwave isolators are nonreciprocal transmission
devices that use the property of Faraday rotation in the ferrite material. In order to
understand the operating principles of circulators and isolators, let us describe the
behavior of ferrites in the nonreciprocal phase shifter.

A nonreciprocal phase shifter consists of a thin slab of ferrite placed in a
rectangular waveguide at a point where the dc magnetic field of the incident wave
mode is circularly polarized. Ferrite is a family of MeO - Fe, O;, where Me is a di-
valent iron metal. When a piece of ferrite is affected by a dc magnetic field, the fer-
rite exhibits Faraday rotation. It does so because the ferrite is nonlinear material and
its permeability is an asymmetric tensor [4], as expressed by

B = pH (4-6-1)
where
f= po(l + %) (4-6-2)
Xm Jk 0
Xm=|jKk Xm O (4-6-3)

0 0 O
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which is the tensor magnetic susceptibility. Here y is the diagonal susceptibility and
Kk is the off-diagonal susceptibility.

When a dc magnetic field is applied to a ferrite, the unpaired electrons in the
ferrite material tend to line up with the dc field because of their magnetic dipole mo-
ment. However, the nonreciprocal precession of unpaired electrons in the ferrite
causes their relative permeabilities (u;", i,) to be unequal and the wave in the fer-
rite is then circularly polarized. The propagation constant for a linearly polarized
wave inside the ferrite can be expressed as [4]

v* = ju Vel 7 9 69

where
=14 xm (4-6-5)
mS=pot K (4-6-6)
mr = M — K (4-6-7)
The relative permeability w, changes with the applied dc magnetic field as given by
pr=1+ l—;% (4-6-8)

where y. = gyromagnetic ratio of an electron

M. = saturation magnetization

w = angular frequency of a microwave field

Hy. = dc magnetic field

! = relative permeability in the clockwise direction (right or positive
circular polarization)
relative permeability in the counterclockwise direction (left or negative
circular polarization)

Il

mr

It can be seen from Eq. (4-6-8) that if @ = |v.|Hq , then w;' is infinite. This
phenomenon is called the gyromagnetic resonance of the ferrite. A graph of w, is
plotted as a function of Hq. for longitudinal propagation in Fig. 4-6-1.

If p, is much larger than u, (u; > w,), the wave in the ferrite is rotated in

H, M,

Figure 4-6-1 Curves of u, versus Hy
for axial propagation.

—_—————————— b e -
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the clockwise direction. Consequently, the propagation phase constant 8* for the
forward direction differs from the propagation phase constant 8~ for the backward
direction. By choosing the length of the ferrite slab and the dc magnetic field so that

w=(@ -prH=3 (4-6-9)

a differential phase shift of 90° for the two directions of propagation can be ob-
tained.

4.-6-1 Microwave Circulators

A microwave circulator is a multiport waveguide junction in which the wave can
flow only from the nth port to the (n + 1)th port in one direction (see Fig. 4-6-2).
Although there is no restriction on the number of ports, the four-port microwave
circulator is the most common. One type of four-port microwave circulator is a com-
bination of two 3-dB side-hole directional couplers and a rectangular waveguide
with two nonreciprocal phase shifters as shown in Fig. 4-6-3.

Port 4

N,
>

Port 2 Figure 4-6-2 The symbol of a circulator.
Coupler 1 Coupler 2
r——- r—"

Primary guide

!
1

!

|

|

|

) |

L1 [ Phase shifter '
| |

|

Jwi_= 180° w, =90°l 180°
Port ] — e — o — —rl|-|-9—0° —————ET—]:::::PortZ
| . Mano o
A
|
I tmw ol | oo
wy = wy =90 270
Port 3 = (e b — — — > Port 4
| | Phase shifter |
[ L Praseshifir ]} | e |
| |
. 7 || ! |
Secondary guide L § L 3

Figure 4-6-3 Schematic diagram of four-port circulator.
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The operating principle of a typical microwave circulator can be analyzed with
the aid of Fig. 4-6-3. Each of the two 3-dB couplers in the circulator introduces a
phase shift of 90°, and each of the two phase shifters produces a certain amount of
phase change in a certain direction as indicated. When a wave is incident to port 1,
the wave is split into two components by coupler 1. The wave in the primary guide
arrives at port 2 with a relative phase change of 180°. The second wave propagates
through the two couplers and the secondary guide and arrives at port 2 with a rela-
tive phase shift of 180°. Since the two waves reaching port 2 are in phase, the power
transmission is obtained from port 1 to port 2. However, the wave propagates
through the primary guide, phase shifter, and coupler 2 and arrives at port 4 with a
phase change of 270°. The wave travels through coupler 1 and the secondary guide,
and it arrives at port 4 with a phase shift of 90°. Since the two waves reaching port
4 are out of phase by 180°, the power transmission from port 1 to port 4 is zero. In
general, the differential propagation constants in the two directions of propagation in
a waveguide containing ferrite phase shifters should be

0w, —ws=02m+ )mw rad/s (4-6-10)
w; — ws = 2nmr rad/s (4-6-11)

where m and n are any integers, including zeros. A similar analysis shows that a
wave incident to port 2 emerges at port 3 and so on. As a result, the sequence of
power flow is designated as 1 - 2 —> 3 —> 4 — 1.

Many types of microwave circulators are in use today. However, their princi-
ples of operation remain the same. Figure 4-6-4 shows a four-port circulator con-
structed of two magic tees and a phase shifter. The phase shifter produces a phase
shift of 180°. The explanation of how this circulator works is left as an exercise for

the reader.
® ®
Magic tee
% %
]l 180° ll

Phase shifter

Figure 4-6-4 A four-port circulator.

A perfectly matched, lossless, and nonreciprocal four-port circulator has an S
matrix of the form

0 S Ss Su
Su 0 Su Su

S = 4-6-12
S Sn 0 Su ( )

Sa Se2 Siz O

Using the properties of S parameters as described previously, the S matrix in Eq.
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(4-6-12) can be simplified to

(4-6-13)

O O == O
O —-Oo O
- o o ©
o o o -

4-6-2 Microwave Isolators

An isolator is a nonreciprocal transmission device that is used to isolate one compo-
nent from reflections of other components in the transmission line. An ideal isolator
completely absorbs the power for propagation in one direction and provides lossless
transmission in the opposite direction. Thus the isolator is usually called uniline.
Isolators are generally used to improve the frequency stability of microwave genera-
tors, such as klystrons and magnetrons, in which the reflection from the load affects
the generating frequency. In such cases, the isolator placed between the generator
and load prevents the reflected power from the unmatched load from returning to the
generator. As a result, the isolator maintains the frequency stability of the generator.

Isolators can be constructed in many ways. They can be made by terminating
ports 3 and 4 of a four-port circulator with matched loads. On the other hand, isola-
tors can be made by inserting a ferrite rod along the axis of a rectangular waveguide
as shown in Fig. 4-6-5. The isolator here is a Faraday-rotation isolator. Its operating
principle can be explained as follows [5]. The input resistive card is in the y-z plane,
and the output resistive card is displaced 45° with respect to the input card. The dc
magnetic field, which is applied longitudinally to the ferrite rod, rotates the wave
plane of polarization by 45°. The degrees of rotation depend on the length and di-
ameter of the rod and on the applied dc magnetic field. An input TE;, dominant
mode is incident to the left end of the isolator. Since the TE,, mode wave is perpen-
dicular to the input resistive card, the wave passes through the ferrite rod without at-
tenuation. The wave in the ferrite rod section is rotated clockwise by 45° and is nor-
mal to the output resistive card. As a result of rotation, the wave arrives at the output

45°
45°
) ) - Output
Dlrectlc_)n ~ waveguide
. of rotation -
Resistive -
vane =
X E-
, - Magnetic

field

Input Reflected Ferrite rod

i wave
waveguide ~
vector

Figure 4-6-5 Faraday-rotation isolator.
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end without attenuation at all. On the contrary, a reflected wave from the output end
is similarly rotated clockwise 45° by the ferrite rod. However, since the reflected
wave is parallel to the input resistive card, the wave is thereby absorbed by the input
card. The typical performance of these isolators is about 1-dB insertion loss in for-
ward transmission and about 20- to 30-dB isolation in reverse attenuation.
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PROBLEMS

Rectangular waveguides

4-1. An air-filled rectangular waveguide has dimensions of @ = 6 cm and b = 4 cm. The
signal frequency is 3 GHz. Compute the following for the TE,o, TEo, , TE:.1, and TM,
modes:

a. Cutoff frequency

b. Wavelength in the waveguide

¢. Phase constant and phase velocity in the waveguide
d. Group velocity and wave impedance in the waveguide

4-2. Show that the TMy;, and TM,, modes in a rectangular waveguide do not exist.

4-3. The dominant mode TE,, is propagated in a rectangular waveguide of dimensions
a=6 cm and b = 4 cm. The distance between a maximum and a minimum is
4.47 cm. Determine the signal frequency of the dominant mode.

4-4. A TE,, mode of 10 GHz is propagated in an air-filled rectangular waveguide. The mag-
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4-6.

4-7.

4-9.

4-10.

4-11.

4-12.

Microwave Waveguides and Components Chap. 4

netic field in the z direction is given by

mX Ty
H. = H, cos (—) cos (—) A/m
T\ Ve

The phase constant is 8 =_1.0475 rad/cm, the quantities x and y are expressed in cen-
timeters, and a = b = 'V 6 are also in centimeters. Determine the cutoff frequency f.,
phase velocity v, , guided wavelength A, , and the magnetic field intensity in the y di-
rection.

. A rectangular waveguide is designed to propagate the dominant mode TE,, at a fre-

quency of 5 GHz. The cutoff frequency is 0.8 of the signal frequency. The ratio of the
guide height to width is 2. The time-average power flowing through the guide is 1 kW.
Determine the magnitudes of electric and magnetic intensities in the guide and indicate
where these occur in the guide.

An air-filled rectangular waveguide has dimensions of a = 6 cm and b = 4 cm. The
guide transports energy in the dominant mode TE, at a rate of 1 horsepower (746 J). If
the frequency is 20 GHz, what is the peak value of electric field occurring in the guide?
An impedance of (0.5 — j0.4)Z; is connected to a rectangular waveguide. A capac-
itive window with a susceptance jB = j0.4}; is located at a distance of 0.2A from the
load.

a. Determine the VSWR on the line in the absence of the window.

b. Find the VSWR on the line in the presence of the window.

. An air-filled rectangular waveguide with dimensions of 3 cm X 1 cm operates in the

TE ;s mode at 10 GHz. The waveguide is perfectly matched and the maximum E field

existing everywhere in the guide is 10° V/m. Determine the voltage, current, and wave

impedance in the waveguide.

The dominant mode TE,, is propagated in a rectangular waveguide of dimensions

a =2.25cm and b = | cm. Assume an air dielectric with a breakdown gradient of

30 kV/cm and a frequency of 10 GHz. There are no standing waves in the guide. De-

termine the maximum average power that can be carried by the guide.

A rectangular waveguide is terminated in an unknown impedance at z = 25 cm. A

dominant mode TE,, is propagated in the guide, and its VSWR is measured as 2.8 at a

frequency of 8 GHz. The adjacent voltage minima are located at z = 9.46 cm and

z = 1273 cm.

a. Determine the value of the load impedance in terms of Z,.

b. Find the position closest to the load where an inductive window is placed in order to
obtain a VSWR of unity.

¢. Determine the value of the window admittance.

A rectangular waveguide is filled by dielectric material of €, = 9 and has inside di-

mensions of 7 X 3.5 cm. It operates in the dominant TE,, mode.

a. Determine the cutoff frequency.

b. Find the phase velocity in the guide at a frequency of 2 GHz.

¢. Find the guided wavelength A, at the same frequency.

The electric field intensity of the dominant TE,, mode in a lossless rectangular wave-

guide is

E, = E, sin <”—x>ev‘3gl for f > f.
a

a. Find the magnetic field intensity H.
b. Compute the cutoff frequency and the time-average transmitted power.
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4-13.

4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

4-21,

4-22.

4-23.

Circular waveguides

An air-filled circular waveguide is to be operated at a frequency of 6 GHz and is to

have dimensions such that f, = 0.8 f for the dominant mode. Determine:

a. The diameter of the guide

b. The wavelength A, and the phase velocity v, in the guide

An air-filled circular waveguide of 2 ¢cm inside radius is operated in the TEq; mode.

a. Compute the cutoff frequency.

b. If the guide is to be filled with a dielectric material of €, = 2.25, to what value
must its radius be changed in order to maintain the cutoff frequency at its original
value?

An air-filled circular waveguide has a radius of 1.5 cm and is to carry energy at a fre-

quency of 10 GHz. Find all TE and TM modes for which transmission is possible.

A TE,; wave is propagating through a circular waveguide. The diameter of the guide is

10 cm, and the guide is air-filled.

a. Find the cutoff frequency.

b. Find the wavelength A, in the guide for a frequency of 3 GHz.

¢. Determine the wave impedance in the guide.

An air-filled circular waveguide has a diameter of 4 cm and is to carry energy at a fre-

quency of 10 GHz. Determine all TE,, modes for which transmission is possible.

A circular waveguide has a cutoff frequency of 9 GHz in dominant mode.

a. Find the inside diameter of the guide if it is air-filled.

b. Determine the inside diameter of the guide if the guide is dielectric-filled. The rela-
tive dielectric constant is €, = 4.

Microwave cavities

A coaxial resonator is constructed of a section of coaxial line and is open-circuited at

both ends. The resonator is 5 cm long and filled with dielectric of €, = 9. The inner

conductor has a radius of 1 cm and the outer conductor has a radius of 2.5 cm.

a. Find the resonant frequency of the resonator.

b. Determine the resonant frequency of the same resonator with one end open and one
end shorted.

An air-filled circular waveguide has a radius of 3 cm and is used as a resonator for TEy,

mode at 10 GHz by placing two perfectly conducting plates at its two ends. Determine

the minimum distance between the two end plates.

A four-port circulator is constructed of two magic tees and one phase shifter as shown

in Fig. 4-6-4. The phase shifter produces a phase shift of 180°. Explain how this circu-

lator works.

A coaxial resonator is constructed of a section of coaxial line 6 cm long and is short-

circuited at both ends. The circular cavity has an inner radius of 1.5 cm and an outer

radius of 3.5 cm. The line is dielectric-filled with €, = 2.25.

a. Determine the resonant frequency of the cavity for TEMqg; .

b. Calculate the quality Q of the cavity.

A rectangular-cavity resonator has dimensions of a =5 cm, b =2 cm, and d =

15 cm. Compute:

a. The resonant frequency of the dominant mode for an air-filled cavity

b. The resonant frequency of the dominant mode for a dielectric-filled cavity of
€ = 2.56
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4-24. An undercoupled resonant cavity is connected to a lossless transmission line as shown
in Fig. P4-24. The directional coupler is assumed to be ideal and matched on all arms.
The unloaded Q of the cavity is 1000 and the VSWR at resonance is 2.5.
a. Calculate the loaded Q. of the cavity.
b. Find the reading of bolometer 2 if bolometer | reads 4 mW.
¢. Compute the power dissipated in the cavity.

Bolometer

Directional
coupler

VSWR Cavity

P4-24
Hybrid circuits

4-25. A microwave transmission system consists of a generator, an overcoupled cavity, two
ideal but not identical dual directional couplers with matched bolometers, and a load
Z,. The lossless transmission line has a characteristic impedance Z,. The readings of
the four bolometers (1, 2, 3, and 4) are 2 mW, 4 mW, 0 and 1 mW, respectively. The
system is shown in Fig. P4-25.

Find the load impedance Z, in terms of Z, .

. Calculate the power dissipated by Z, .

Compute the power dissipated in the cavity.

. Determine the VSWR on the input transmission line.

Find the ratio of Q¢/Q, for the cavity.

pap Ty

// Bolometc{

-

~ Cavity
20dB 15dB

P4-25

4-26. A symmetric directional coupler has an infinite directivity and a forward attenuation of
20 dB. The coupler is used to monitor the power delivered to a load Z, as shown in
Fig. P4-26. Bolometer 1 introduces a VSWR of 2.0 on arm 1; bolometer 2 is matched
to arm 2. If bolometer 1 reads 9 mW and bolometer 2 reads 3 mW:
a. Find the amount of power dissipated in the load Z, .
b. Determine the VSWR on arm 3.
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Bolometer 2

4-27.

4-28.

4-29.

4-30.

4-31.

VSWR =2.0
Bolometer 1
!
2, :l l
T
! I
| [
| i
| |
| |
4, 20dB |3

P4-26

A semicircular-cavity resonator has a length of 5 cm and a radius of 2.5 cm.
a. Calculate the resonant frequency for the dominant mode if the cavity is air-filled.
b. Repeat part (a) if the cavity is loaded by a dielectric with a relative constant of 9.

The impedance matrix of a certain lumped-element network is given by

SR M

Determine the scattering matrix by using §-parameter theory and indicate the values of
the components:

Sll S12
S,' =
[Sk] [521 Szz]

A hybrid waveguide is constructed of two identical rectangular waveguides across each
other at the center and works as a four-port device. Write a general scattering matrix
and then simplify it as much as possible by inspection of geometric symmetry and by
use of the known phases of the electric waves.

A helical slow-wave structure has a pitch P of 2 mm and a diameter of 4 cm. Calculate
the wave velocity in the axial direction of the helix.

Two 3-dB quadrature Lange couplers are used in a GaAs MESFET balanced amplifier
circuit with the following parameters:

MESFET a: Reflection coefficients 81, = 0.7488/—158.3°

S». = 0.8521/—155.7°
Forward transmission Sz, = 1.3500/—8.5°

coefficient
MESFET b: Reflection coefficients S, = 0.6210/—-175.9°
Sz = 0.7727/-151.4°
Forward transmission ~ Si, = 1.2200/=19.1°

coefficient

Compute: a. The input and output VSWRs
b. The power gain in dB for the balanced amplifier
¢. The power loss in dB if one MESFET fails
d. The linear output power gain in dB



Chapter 5

Microwave Transistors
and Tunnel Diodes

5-0 INTRODUCTION

Microwave solid-state devices are becoming increasingly important at microwave
frequencies. These devices can be broken down into four groups. In the first group
are the microwave bipolar junction transistor (BJT), the heterojunction bipolar tran-
sistor (HBT), and the tunnel diodes. This group is discussed in this chapter. The
second group includes microwave field-effect transistors (FETs) such as the junc-
tion field-effect transistors (JFETs), metal-semiconductor field-effect transistors
(MESFETs), high electron mobility transistors (HEMTs), metal-oxide-semiconduc-
tor field-effect transistors (MOSFETs), the metal-oxide-semiconductor transistors
and memory devices, and the charge-coupled devices (CCDs). This group is de-
scribed in Chapter 6. The third group, which is characterized by the bulk effect of
the semiconductor, is called the transferred electron device (TED). These devices
include the Gunn diode, limited space-charge-accumulation diode (LSA diode), in-
dium phosphide diode (InP diode), and cadmium telluride diode (CdTe diode). This
group is analyzed in Chapter 7. The devices of the fourth group, which are operated
by the avalanche effect of the semiconductor, are referred to as avalanche diodes:
the impact ionization avalanche transit-time diodes (IMPATT diodes), the trapped
plasma avalanche triggered transit-time diodes (TRAPATT diodes), and the barrier
injected transit-time diodes (BARITT diodes). The avalanche diodes are studied in
Chapter 8. All those microwave solid-state devices are tabulated in Table 5-0-1.

In studying microwave solid-state devices, the electrical behavior of solids is
the first item to be investigated. In this section it will be seen that the transport of
charge through a semiconductor depends not only on the properties of the electron
but also on the arrangement of atoms in the solids. Semiconductors are a group of
substances having electrical conductivities that are intermediate between metals and
insulators. Since the conductivity of the semiconductors can be varied over wide

166
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TABLE 5-0-1 MICROWAVE SOLID-STATE DEVICES

Microwave
solid-state -
devices

_| Field-effect

transistors

devices

Avalanche transit-
~ time devices

F Microwave transistor *E HBT

Microwave BJT
Tunnel diode

JFET

MESFET, HEMT
MOSFET

NMOS, PMOS, CMOS
Memories

CCD

— Gunn diode

- Transferred electron —1 LSA diodes

- InP diodes
— CdTe diodes

— Read diode

— IMPATT diode
— TRAPATT diode
~ BARITT diode
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ranges by changes in their temperature, optical excitation, and impurity content,
they are the natural choices for electronic devices. The properties of important
semiconductors are tabulated in Table 5-0-2.

The energy bands of a semiconductor play a major role in their electrical be-
havior. For any semiconductor, there is a forbidden energy region in which no al-
lowable states can exist. The energy band above the forbidden region is called the
conduction band, and the bottom of the conduction band is designated by E.. The
energy band below the forbidden region is called the valence band, and the top of

TABLE 5-0-2 PROPERTIES OF IMPORTANT SEMICONDUCTORS

Bandgap Mobility at 300°K
energy (eV) (cm?/V - s) Relative
dielectric
Semiconductor 0°K 300°K Holes Electrons constant
C 5.51 5.47 1600 1800 5.5
Ge 0.89 0.803 1900 3900 16
Si 1.16 1.12 450 1600 11.8
AlSb 1.75 1.63 420 200 11
GaSb 0.80 0.67 1400 4000 15
GaAs 1.52 1.43 400 8500 13.1
GaP 2.40 2.26 75 110 10
InSb 0.26 1.80 750 78,000 17
InAs 0.46 0.33 460 33,000 14.5
InP 1.34 1.29 150 4600 14
CdS 2.56 2.42 50 300 10
CdSe 1.85 1.70 800 10
ZnO 3.20 200 9
ZnS 3.70 3.60 165 8
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the valence band is designated by E, . The separation between the energy of the low-
est conduction band and that of the highest valence band is called the bandgap en-
ergy E, , which is the most important parameter in semiconductors.

Electron energy is conventionally defined as positive when measured upward
whereas the hole energy is positive when measured downward. A simplified band di-
agram is shown in Fig. 5-0-1.

& \ M

% (‘onductlon band
8 Eq
L
‘ E,
§ \ Valence band
AN

Distance Figure 5-0-1 Energy-band diagram.

In the 1970s, it seemed that microwave transistors would be useful for generat-
ing power up to about 5 GHz. Since their inception, avalanche diodes have produced
in excess of 4 W continuous wave (CW) at 5 GHz. Gunn diodes had been considered
only for local oscillators or low-power transmitter applications, but recent results in-
dicate that a single Gunn diode can generate an output power of 1 W at X band. At
higher microwave frequencies, and even well into the millimeter range, limited
space-charge-accumulation diodes (LSAS) can provide the highest peak power of
any solid-state device, up to 250W in C band, 100 W in X band, and 50 W in Ku
band. Since the pulsed Gunn and TRAPATT diodes are essentially transit-time
devices, their operating frequency is approximately determined by the thickness of
the active layer in the diode. An operating frequency of 10 GHz requires an active
layer thickness on the order of 10 wm (microns). Thus only a limited voltage can be
applied to such a thin layer because of breakdown limitations. Consequently, the
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Figure 5-0-2 Peak-power levels
Frequency (GHz) achieved by microwave diode.
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peak power capability of both the pulsed Gunn diodes and the TRAPATT diodes is
greatly limited at higher frequencies. On the other hand, the peak power capability
of an LSA diode is approximately proportional to the square of the thickness of the
active layer because its operating frequency is independent of the thickness of the
active layer. Thus the LSA diode is capable of producing higher peak power than ei-
ther the pulsed Gunn diodes or the TRAPATT diodes. Figure 5-0-2 shows peak
power versus frequency for these three devices.

Solid-state microwave power sources are widely used in radar, communica-
tions, navigational and industrial electronics, and medical and biological equipment.
Representative applications for microwave solid-state devices are listed in Table

5-0-3.

TABLE 5-0-3 APPLICATIONS OF MICROWAVE SOLID-STATE DEVICES

Devices

Applications

Advantages

Transistor

TED

IMPATT

TRAPATT

BARITT

L-band transmitters for telemetry
systems and phased array radar
systems

L- and S-band transmitters for
communications systems

C-, X-, and Ku-band ECM amplifiers
for wideband systems

X- and Ku-band transmitters for radar
systems, such as traffic control

Transmitters for millimeter-wave
communications systems

S-band pulsed transmitters for phased
array radar systems

Local oscillators in communications
and radar receivers

Low cost, low power supply, reliable,
high CW power output, light weight

Low power supply (12 V), low cost,
light weight, reliable, low noise, high
gain

Low power supply, low cost, reliable,
high CW power output, light weight

High peak and average power, reliable,
low power supply, low cost

Low cost, low power supply, reliable,
low noise

5-1 MICROWAVE BIPOLAR TRANSISTORS

The invention of the transistor (contraction for transfer resistor) by William Shock-
ley,and his coworkers at Bell Laboratory in 1948 had a revolutionary impact on elec-
tronic technology in general and on solid-state devices in particular. Since then tran-
sistors and related semiconductor devices have replaced vacuum tubes for lower-
power sources. Microwave power transistor technology has advanced significantly
during the past three decades. The microwave transistor is a nonlinear device, and its
principle of operation is similar to that of the low-frequency device, but requirements
for dimensions, process control, heat sinking, and packaging are much more severe.

For microwave applications, the silicon (Si) bipolar transistors dominate for
frequency range from UHF to about S band (about 3 GHz). As the technology im-
proves, the upper frequency limit for these devices is continuously being extended,
and at the present time the devices are capable of producing useful power up to
22 GHz. The majority of bipolar transistors of current interest are fabricated from
silicon, although GaAs devices offer prospects for improvements in operating fre-
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quency, in high temperatures, and in radiation hardness. The Si bipolar transistor is
inexpensive, durable, integrative, and offers gain much higher than available with
competing field-effect devices. It has moderate noise figure in RF amplifiers and 1/f
noise characteristics that are about 10—20 dB superior to GaAs MESFETs. For these
reasons, the Si bipolar transistors dominate in amplifier applications for the lower
microwave frequencies and are often the devices of choice for local oscillators.

5-1-1 Physical Structures

All microwave transistors are now planar in form and almost all are of the silicon
n-p-n type. The geometry can be characterized as follows: (a) interdigitated, (b)
overlay, and (c) matrix (also called mesh or emitter grid) as shown in Fig. 5-1-1.
The interdigitated type is for a small signal and power, but the overlay type and
matrix type are for small power only. The figure of merit for the three surface
geometries shown in Fig. 5-1-1 is listed in Table 5-1-1 [1].

Emitter
. — metalization ~"—m

.  — |
Emllters\~g

Base o |
metalization

(a) Interdigitated (b) Overlay

))4— Emitter metalization

pt base diffusion

) ﬂ— Base metalization

(¢) Matrix

Figure 5-1-1 Surface geometries of microwave power transistor. (From H. Sobol
and F. Sterzer [1]: reprinted by permission of IEEE, Inc.)

For high-frequency applications, the n-p-n structure is preferred because the
electron mobility (1, = 1500 cm?V - s) is much higher than the hole mobility
(1, = 450 cm?/V - s). Figure 5-1-2 shows an example of the densities for an n-p-n
transistor. The density unit is in cm%V - s.

Although there are many ways of fabricating a transistor, diffusion and ion im-
plantation are generally used. For example, the structure would typically start with a
lightly doped n-type epitaxial layer as the collector. The base region would be
formed by counter-doping the base region p-type by diffusion. The emitter would
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TABLE 5-1-1 FIGURE OF MERIT (M) OF VARIOUS SURFACE GEOMETRIES
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Source: From H. Sobol and F. Sterzer [1]; reprinted by permission of IEEE, Inc.

be formed by a shallow heavily doped n-type diffusion or by ion implantation. The
emitter and base contacts are generally located on the semiconductor surface in an
interdigital, planar arrangement. The interdigital geometry always provides for
n + 1 base fingers, where n is the number of emitter fingers. The number of fingers
varies with the application, with more fingers required as the output power capabil-

Emitter Base Collector
—— /,
N P N
. L, —— ]
£ ¢
n, = 1.7 % 107 n,=1.7x10" n, = 1.7 X 104
Py =37x10° pp=3.7%10" P, = 3.7 X 1012

Ry _ o+
W
{

14 EB

I
"

Figure 5-1-2 Carrier densities of an n-p-n transistor.
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ity of the transistor increases. Additional fingers, however, increase the device para-
sitics and degrade the noise and upper frequency capability of the devices.

Figure 5-1-3 shows two schematic diagrams for a bipolar junction transistor
(BJT): (a) the cross section of a discrete n-p-n planar BJT and (b) the cross section
of a chip-type n-p-n integrated BJT.

The p-n-p bipolar junction transistor is a complementary structure of the n-p-n
BIT by interchanging p for n and n for p. The p-n-p BIT is basically fabricated by
first forming an n-type layer in the p-type substrate; then a p*-type region is devel-

Insulator layer i
Si0, Emitter contact

Base contact

p-base layer
n-emitter layer
Collector contact

n-collector layer

(a) Discrete n-p-n planar BIT

Emitter contact

Base contact
Substrate

(b) Integrated chip-type n-p-n BJT

Figure 5-1-3  Schematic diagrams of bipolar junction transistors. (After D. Navon

2])
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oped in the n layer. Finally, metallic contacts are introduced to the p* region and
p layer through the windows opened in the oxide layer and to the p region at the
bottom.

5-.1-2 Bipolar Transistor Configurations

In general, there are two types of bipolar transistors: p-n-p and a-p-n. In practical
applications, a transistor can be connected as three different configurations: common
base (CB), common emitter (CE), and common collector (CC), depending on the
polarities of the bias voltages connected to its terminals.

Common-base configuration. The common-base (CB) configuration refers
to the one where the emitter (input circuit) and collector (output circuit) terminals
are common to the base as shown in Fig. 5-1-4.

p-1-p transistor n-p-n transistor

E C I C
n n n n Iz n
?L__; ;_l |

1 1 '
B B
Vig Vea Vig Vg
E /—\ C E /\ C
B B )
Vig Vep Vie Ve
() CB configuration (b) CB configuration

Figure 5-1-4 Common-base configurations for p-n-p and n-p-n transistors.

The CB configuration is also called the grounded-base configuration. For a p-
n-p transistor, the largest current components are caused by holes. Holes flow from
the emitter to the collector and down toward ground out of the base terminal. In an
n-p-n transistor all current and voltage polarities are negative to those in a p-n-p
transistor. The CB configuration of a transistor is usually used in amplifier applica-
tions. Its input voltage Vez and output current I can be expressed in terms of the out-
put voltage Ves and input current Iz as

Ve = some function (Veg, Ir) (5-1-1)
Ic = some function (Ves, Ir) (5-1-2)

Common-emitter configuration. Most transistors have their emitter,
rather than their base, as the terminal to both input and output networks. Such a
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configuration is known as common-emitter (CE) or grounded-emitter configuration
as shown in Fig. 5-1-5.

In the CE configuration, the input current Iz and the output voltage V¢ are in-
dependent variables, whereas the input voltage Ve and output current /¢ can be writ-
ten as

Vee = some function (Ve , Is) (5-1-3)
Ic = some function (Ve , Ip) (5-1-4)

The CE configuration is commonly used as a switch or pulse transistor amplifier.
This is because the transistor is open at the cutoff mode and is closed at the satura-
tion mode.

C C
_——_——(? _—.—_—Q
14 n
B n B r
p n
y__l_“__ ._l_4|__
E E
Ve Vee Vg Vee
C C
B B
E E
Ve Vee Vg Vee

Figure 5-1-5 Common-emitter configurations for p-n-p and n-p-n transistors.

Common-coliector configuration. Another transistor-circuit configuration
is called the common-collector or grounded-collector configuration as shown in Fig.
5-1-6.

In a common-collector (CC) configuration, the output voltage of the load is
taken from the emitter terminal instead of the collector as in the common-base and
common-emitter configurations. When the transistor is cut off, no current will flow
in the emitter terminal at the load. When the transistor is operating in a saturation
mode, the load current reaches toward its maximum. Therefore the CC configura-
tion transistor can also be used as a switch or pulse amplifier. The significant differ-
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Figure 5-1-6 Common-collector configuration for p-n-p and n-p-n transistors.

ence, however, between common-emitter and common-collector configurations is
that the common-collector amplifier has no voltage gain.

Hybrid-pi equivalent model.

The hybrid-pi equivalent model is commonly

used in the normal active mode of the common-emitter configuration for small-
signal operation. Fig. 5-1-7 shows the hybrid-pi equivalent model of the common-

emitter configuration.

For a small-signal operation, the nonlinear or ac parameters of a hybrid-pi

equivalent model can be expressed as
U(‘e

1

where h;,

= hieib + hrevce (5—1-5)
. = hfgib + hgev(‘e (5-1-6)
- & (5-1-7)
o Vce=constant
_ avbe .
= | (5-1-8)
ib
di,
= e 5-1-9
il (5-1-9)
di.
=2 5-1-10
ooy ( )

ip
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(a) Common-emitter n-p-n transistor
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£ Figure 5-1-7 Hybrid-pi equivalent

(c) Simplified hybrid-pi model at low frequency model.
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When the dimensions of a bipolar junction transistor become very small, their Z, Y,
or H parameters cannot be measured because the input and output terminals cannot
be openly and shortly realized. Therefore, the S parameters are commonly mea-
sured. In transistor design, it is necessary to convert the § parameters into Y
parameters for the network component computations.

An incremental change of the emitter voltage AV, at the input terminal will
induce an incremental change of the collector current Ai. at the output terminal.
Then the mutual conductance (or transconductance) of a small-signal transistor is
defined by
di.
aUb’e

Yee

8m = (5-1-11)

From the diode junction theory the thermal equilibrium density at the junction is
equal to the minority density times the forward-bias voltage factor. That is,

n,(0) = npe*r't (5-1-12)
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and
li I - qADnnp(O)
c Ln

Substitution of Eq. (5-1-12) into Eq. (5-1-13) and differentiation of the resultant
yield

(5-1-13)

i
o= 5-1-14
g v, (5-1-14)

where Vr = 26 mV at 300° K is the voltage equivalent of temperature

As the width of the base region is very narrow, C, > C., the diffusion capaci-
tance in the base charge-storage is given by

_ 40
Cre = V.. (5-1-15)
and the total charges stored in the base is
0
, = 1 OWA (5-1-16)
2
Then the diffusion capacitance is expressed by
— qAanp(O) _ _ui%_
Cre Ty, &m D, (5-1-17)
The voltage across the diffusion capacitance can be written as
Vi = —2 (5-1-18)

JjwC
The small-signal input conductance of the emitter junction looking at the input of
the base is defined as

| _Is _ I _ gn

== =—=——= 5-1-19
8 R V& heeVr hee ( )

where hgg is the linear or dc common-emitter current gain factor and
gn is the mutual conductance.

Example 5-1-1: Equivalent Elements of a Hybrid-Pi Common-Emitter Circuit

A Si n-p-n bipolar transistor has the following parameters:

Collector current: I. = 6 mA
Common-emitter current gain factor: heg = 120
Operational temperature: T =300°K

I

Cross-sectional area: W, = 107% cm?
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Compute: (a) the mutual conductance g.; (b) the input conductance g, and resistance
R;; (c) the electron diffusion coefficient D, ; and (d) the diffusion capacitance Ch..

Solution
a. The mutual conductance is

g = = = 0.23 mho

gn 023 B
= ——=—— = ], 2 X 10 3
g o 120 1.9 mho
R, = 521 ohms

¢. The electron diffusion coefficient is
KT _
D, = /.L,,; = w,Vr = 1600 X 26 X 1073 = 41.6 cm%s

d. The diffusion capacitance is

Wi 1078
C;e = gmiﬁb = 023 X 2)(—416. = 276 pF

5-1-3 Principles of Operation

The bipolar junction transistor (BJT) is an active three-terminal device which is
commonly used as an amplifier or switch. Its principles of operation are discussed in
this section.

Modes of operation. A bipolar transistor can operate in four different

modes depending on the voltage polarities across the two junctions: normal (active)
mode, saturation mode, cutoff mode, and inverse (or inverted) mode as shown in

Fig. 5-1-8.

1. Normal Mode. If the emitter junction of an n-p-n transistor is forward-biased

and the collector is reverse-biased, the transistor is operated in the normal
mode as shown in Fig. 5-1-8(a). The term forward bias means that the posi-
tive polarity of the bias voltage is connected to the p side and the negative po-
larity to the n side for a p-n junction; the opposite obtains for reverse bias.
Most transistor amplifiers are operated in normal mode, and its common-base
current gain alpha is known as the normal alpha ay .

Saturation Mode. When both transistor junctions are forward-biased, the
transistor is in its saturation mode with very low resistance, and acts like a
short circuit, as shown in Fig. 5-1-8(b).

Cutoff Mode. If both transistor junctions are reverse-biased the transistor is
operated in its cutoff mode. As the current is cut off, the transistor acts like an
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Figure 5-1-8 Operational modes of an n-p-n transistor.

open circuit. Both the cutoff and saturation modes of a transistor are used as
switching devices for the OFF and ON states. Fig. 5-1-8(c) shows the cutoff-
mode bias-voltage connection.

4. Inverse Mode. When the emitter is reverse-biased and the collector is
forward-biased, the transistor is operated in the inverse (or inverted) mode,
and its current gain is designated as the inverse alpha «,. If the transistor is
symmetric, the normal alpha ay is nearly equal to the inverse alpha a;. The
two current gains, however, are not actually equal because of their unequal
dopings. The inverse mode is shown in Fig. 5-1-8(d). In practice, the inverse
mode is not commonly used except as a multiemitter transistor in TTL
(transistor-transistor logic) logic gate.

Current flow in normal mode. When a transistor is properly biased, the
holes and electrons in the transistor will follow the field direction in motion. Figure
5-1-9 shows the current flow of an n-p-n transistor.

The current flow in an ideal n-p-n bipolar junction transistor is analyzed under
the following assumptions:

1. The resistivities of the semiconductor regions are low

2. The injected current densities are low

3. The space-charge layer widening effects can be ignored

4. The current and voltage of n-p junction diodes follow the basic equation of

I =1(""1-1) (5-1-20)
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Figure 5-1-9 Current flow in an n-p-n transistor.

For a common-base n-p-n transistor, the emitter junction is forward-biased and the
collector junction is reverse-biased as shown in Fig. 5-1-9. Consequently, the emit-
ter current Ir consists of electron current I,z crossing from the emitter into the base
and the hole current [,¢ crossing from the base into the emitter. Since the doping of
the emitter is much larger than the doping of the base, the hole current is negligible.
However, not all the electrons crossing the emitter junction Je reach the collector
junction J because some of them combine with the holes in the p-type base. If I,¢
is the electron current at the collector junction Jc, there must be a recombination
current I,z — I.c leaving the base. When the emitter is open-circuited, then I = 0
and I,c = 0. As a result, the collector current /¢ is equal to the reverse saturation
current /¢, because the junction between base and collector is reverse-biased. From
Fig. 5-1-9, we have

I = L — (L — Lc) — Ico + I, (5-1-21)

I = —Lg + Le — I (5-1-22)
‘and

Ie = —Ico — Le (5-1-23)

For an n-p-n transistor, Ico consists of holes moving across the collector junction J¢
from right to left (collector to base) and electrons crossing Jc in the opposite direc-
tion. Since the reference direction for Ico in Fig. 5-1-9 is assumed from left to right,
then, for an n-p-n transistor, Ico is positive for forward-biased J¢ junction and I¢o is
negative for reverse-biased J¢ junction. The saturation current Ico at the Jc junction
of an n-p-n transistor is given by

AgDn,,  AqD,p. 2( D, D, )
+ = ="+ —= 5-1-
W Le AM\wN, T LN, (-1-24)

Ico =



Sec. 5.1 Microwave Bipolar Transistors 181

Also from Fig. 5-1-9, the sum of the three terminal currents should be zero and it is
IE + IC + IB = 0 (5-1-25)

Equation (5-1-25) can be verified by adding together Egs. (5-1-21) through
(5-1-23).

Current flow in common-base n-p-n transistor. In a common-base
configuration of an n-p-n transistor as shown in Fig. 5-1-9, the emitter n-p junction
is forward-biased and the collector p-n junction is reverse biased. Their total current
flow can be found from the basic diffusion equation. The steady-state diffusion equa-
tion for an n-p-n transistor at low-level injection is given by

dn
I, = AgD, =~ -1-25
aDn (5 a)
and
2 _
p, =4 _m T, (5-1-26)

dx? Tw

where D, = electron diffusion constant
n, = minority electron carrier density in the p-type base layer
= equilibrium minority electron carrier density in the p-type base layer
distance measured from the base region as shown in Fig. 5-1-10
7, = electron lifetime
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The general solution of Eq. (5-1-26) can be written as
Ny, — Npo = Cre */in + Cre*/tn (5-1-27)

where C, and C; are constants to be determined by the boundary conditions

L. = V 7,D, is the electron diffusion length
npo = ni/N, is the mass-action law

The boundary conditions at the edge of the emitter depletion layer in the base
side with a forward-biased emitter junction is

n,(0) = nyeVe'r (5-1-28)
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where V; = forward-biased voltage across the emitter junction
Vr =26 X 107 V at 300° k is the voltage equivalent of temperature

The boundary condition at the depletion-layer edge of the reverse-biased collector
junction is usually assumed to be

n(W) =0 (5-1-29)
The two boundary conditions are shown in Fig. 5-1-10.
The general solution of Eq. (5-1-26) can be written as

_ vve _ 1y Sinh [(W = x)/L,] _ sinh (x/L,)
p(x) = o€/ 1)[ sinh W/L) ”""(1 sinh (W/L,,))] (5-1-30)

In almost all transistors, the base width is made very narrow (W < L,) so that
the minority-carrier recombination in the base is negligible. As a result, the
boundary conditions specify the two end points of the base carrier concentration
with a straight line as shown in Fig. 5-1-11. (Note: sinhy =y, coshy = 1,
cothy = l/y,and sechy = 1 — y¥2fory < 1.)

1.0

0.8

0.6

" p(x)/np(0)

0.4

Figure 5-1-11 Minority carrier distri-
butions in base region as a function of
Distance x WiL,. (After S. Sze [3].)

For W < L,, the minority carrier distribution of Eq. (5-1-30) can be sim-
plified to

ny(x) = n,,(0)<1 - %) = n,,oeVE/VT<1 - viv> (5-1-31)

Then the boundary conditions for holes in the emitter and collector depletion regions
can be expressed, respectively, as

Pe = proeE'T atx = —xg (5-1-32)
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and
pc = pcoe” VT atx = xc (5-1-33)
where pro = equilibrium minority hole density in the emitter region
Pco = equilibrium minority hole density in the collector region

Substituting Egs. (5-1-32) and (5-1-33) into Eq. (5-1-27) yields the minority distri-
butions in the emitter and collector regions as

pe(x) = peo + pro(e"¥'T — 1) exp [(x + x£)/L,]  forx < —xz  (5-1-34)
and

pc(x) = pco + pco exp [—(x — xc)/L.}  forx = xc (5-1-35)
The total excess minority-carrier charge in the base region is given by

__ AgWn,(0)

Qs = Aq f [n,(x) — npo(x)] dx = > (5-1-36)

where A = cross section
The base recombination current for a carrier lifetime 7, is

A0 _ AWy vppy, (5-1-37)

Tn 27

Ii’lB =

According to the carrier injection processes, the minority electron density at
the reverse-biased collector junction Jc is usually assumed to be zero. That is,

Hye = 0 atJeforx = W (5-1-38)

This assumption is reasonable because the electric field of the collector junction
sweeps carriers into the collector so that the collector is almost a perfect sink.

The electron current 7, which is injected from the emitter into the base at
x = 0 for L, > W is proportional to the gradient of the minority carrier density and
is expressed as

dnp —AqD"nf’o l: X 1 :l
= et = —1 2" coth (WIL,)| (eVE/"T — 1) + ————
Le = AaD. 2| —— coth (WIL,)| (e ) osh (WL
_ 2 2 ?
= /11\?%—”' (e¥e/r — 1) — A;Dp":' = ‘A;Dp"‘f'evs/w (5-1-39)

The electron current which reaches the collector at x = W is

dn, —AgD.ny, 1 [ Vi/Vr ]
lc = Aq dx | _, L, sinh (W/L,) (e )+ cosh ( )
—AqD.ni ., AgD,n} AgD.n}
= A GVEVE ) — = - E/VT -1-
NW (e 1) NW NW e (5-1-40)

The collector current /¢ can also be expressed as
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i
lLe=1Ig— g = 1n5<1 - —"‘1)
InE
B w2\ E( W2>
—I,,E(l ZT"D) =I5 1 >0 (5-1-41)

where Ly = diffusion length of the emitter and exp (Ve/Vr) 3 1 is assumed

Similarly, the hole currents are

Le = ALDEEQ((;VE/VT -1 forx = —xg (5-1-42)
LE
and
AqD
Le = LLEP—CQ for x = xc (5-1-43)
C

where Dg and D¢ are the hole diffusion constants in the emitter and collector,
respectively
L¢ = diffusion length of the collector

The current flow in an n-p-n transistor as described so far is an ideal model,
and its recombination-generation current is not counted. If the recombination cur-
rent is considered, the current flow is the sum of the drift, the diffusion, and the
recombination-generation currents. That is,

I = I, (drift) + I, (diffusion) + I,, (recombination-generation) (5-1-44)

The recombination-generation current can be computed from the following equation

Iy = = Vel (5-1-45)

where x; = depletion-layer width
7, = effective minority-carrier lifetime in the depletion layer

Figure 5-1-12 shows current-voltage (I-V) characteristics of an ideal n-p-n bipolar
transistor for a common-base configuration.

There are three regions for the I-V characteristics of an n-p-n bipolar transis-
tor:

1. Active Region: In this region the emitter junction is forward-biased and the
collector junction is reverse-biased. The collector current ¢ is essentially in-
dependent of collector voltage and depends only on the emitter current /.
When the emitter current is zero, the collector current is equal to the reverse
saturation current Ic, .

2. Saturation Region: In this region, as shown on the left side of Fig. 5-1-12,
both emitter and collector junctions are forward-biased. The electron current
flows from the n side across the collector junction to the p-type base. As a re-
sult, the collector current increases sharply.



Sec. 5.1 Microwave Bipolar Transistors v 185

Saturation Acti .
K region »‘4— ctive I‘LElOn——————ﬁ

S0
1, = —40 mA
-
£
& -30
=
w
E
- -20
o
3
2
G
o
~10

o
|

Cutoff region

: "
I 1

2 4 0 8

Collector-to-base voltage Vg in volts
Figure 5-1-12 Current-Voltage (I-V) characteristics of an n-p-n transistor.
3. Cutoff Region: In this region the emitter and collector junctions are both

reverse-biased. Consequently, the emitter current is cut off to zero, as shown
in the lower right side of Fig. 5-1-12.

Example 5-1-2: I-V Characteristics of an n-p-n Transistor
A silicon n-p-n transistor at 300° K has the following parameters:

Base width: w = 107" cm
Diffusion length in emitter: Lg = 107* cm
Diffusion length in collector: Le =5 X 10%*cm
Base resistivity: ps = 0.15 Q-cm
Emitter resistivity: pe = 0.006 Q-cm
Collector resistivity: pc = 16 Q-cm
Emitter junction voltage: Ve =05V
Collector junction voltage: Ve =06V
Cross-section area: A =2x 10" cm?

Find:

a. The impurity densities in the emitter, base, and collector regions
b. The mobilities in the emitter, base, and collector regions
c. The diffusion lengths in the emitter, base, and collector regions
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d. The equilibrium densities in the emitter, base, and collector regions
e. The terminal currents

Solution

a. The impurity densities are read from Fig. A-1 in Appendix A as

Ne=1x10% cm™? in the n-type emitter region

Nus =15 x 107 em™ in the p-type base region

Nie =3 x 10 cm™? in the n-type collector region
b. The mobilities are read from Fig. A-2 in Appendix A as

e = 80 cm¥V-s in the emitter

e = 105 cm¥V-s in the emitter

s = 400 cm?V-s in the base

Hne = 1600  cm¥V-s in the collector

¢. The diffusion constants are computed to be
Do = ppeVr = 80 X 26 X 107° = 2.08 cm?¥s
Due = pneVr = 105 X 26 X 1073 = 2,73 cm%s
DpB = p/pBVT =400 X 26 X 10_3 = 10.4 CmZ/S
Doc = pacVr = 1600 X 26 X 1073 = 41.6 cm?s
d. The equilibrium densities are
neg = n}/Na = (1.5 X 10°)%/(1.5 X 10"7) = 1.5 X 10> cm™}
Peo = n}/Ng = (1.5 X 10'9)%/(1 x 10"%) = 2.5 x 10* cm™?
Pco = n¥/Nge = (1.5 X 10'°)3/(3 x 10"¥) =75 x 10°® cm™

e. The terminal currents are computed as follows:
From Eq. (5-1-39), the electron current in the emitter is

_AgqD.n} VetV — A;Dpn?
NW LeNy

_2 X 1072 X 1.6 X 10719 X 2.73 x (1.5 x 10'°)?
1.5 x 10" x 10°°

x exp [0.5/(26 x 1073)]
—13.104 X 107" x 2.248 x 10?
—0.2946 mA

InE = (eVE/ N VT - 1)

From Eq. (5-1-42), the hole current in the emitter is

AqDepeo ) AgDyn?
Ly = 1222 (eVelVr — ) = 222 L (pVE/VD —
PE LE (e ) LENd (e 1)
_2X 1072 X 1.6 X 107" X 2.08 X (1.5 x 10')? .
= 107 X 1 X 107 X (2.248 x 10® — 1)
= 14.976 x 107'® x 2.248 x 10®

0.337 pA

From Eq. (5-1-24), the reverse saturation current in the collector is
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—AqD.ni  AgDyp.,

leo=—Nw Le
= —13.104 x 107" — 14,976 x 107'®
= —1.312pA
From Eq. (5-1-40), the electron current which reaches the collector is
Le = —A;]V—Iu)v”vnjevb’/"' = —13.104 x 107" x 2.248 x 10
= —0.2946 mA

The emitter current is
Ig = —Le+ Ly = —33.67 X 107* — 0.295 x 103
= —0.295 mA
The collector current is
Ic = —Ico — Iic = 1.312 X 107" — (-0.295 X 1073)
0.295 mA

The current in the base terminal is
Iy = Ip — (le — 1.c) + Ico
= 33.67 x 1078 — (—=29.46 X 107° + 29.46 x 107%) + 1.312 x 10712
= 0.337 uA

Note: The recombination-generation currents in the space-charge regions are not
counted.

5-1-4 Amplification Phenomena

Bipolar transistors are usually used for signal amplification. The amplification phe-
nomena can be described from the common-base and common-emitter transistors.

Common-base n-p-n transistor. The ratio of the output current to the in-
put current for a small signal in a bipolar junction transistor is known as the cu