

PHP Programming Solutions
 Vikram Vaswani

Logo

New York Chicago San Francisco
 Lisbon London Madrid Mexico City Milan

 New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2007 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America.
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the
publisher.

0-07-159659-3

The material in this eBook also appears in the print version of this title: 0-07-148745-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention
of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@
mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in
and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the
right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify,
create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through
the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special,
punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has
been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007148745X

For the baby:
how lucky are we?

About the Author
Vikram Vaswani is the founder and CEO of Melonfire
(http://www.melonfire.com/), a consulting services
firm with special expertise in open-source tools and
technologies. He is a passionate proponent of the open-source
movement and frequently contributes articles and tutorials
on open-source technologies—including Perl, Python,
PHP, MySQL, and Linux—to the community at large. His
previous books include MySQL: The Complete Reference
(McGraw-Hill, 2003; http://www.mysql-tcr.com/) and
How to Do Everything with PHP and MySQL (McGraw-Hill,
2005; http://www.everythingphpmysql.com/).

Vikram has more than eight years of experience working with PHP and MySQL
as an application developer. He is the author of Zend Technologies’ PHP 101 series
for PHP beginners, and has extensive experience deploying PHP in a variety of
different environments (including corporate intranets, high-traffic Internet Web sites,
and mission-critical thin client applications).

A Felix Scholar at the University of Oxford, England, Vikram combines his
interest in Web application development with various other activities. When not
dreaming up plans for world domination, he amuses himself by reading crime
fiction, watching old movies, playing squash, blogging, and keeping an eye out
for unfriendly Agents. Read more about him and PHP Programming Solutions at
http://www.php-programming-solutions.com.

About the Technical Reviewer
Chris has been involved in the PHP community for about eight or nine years now.
Soon after discovering the language, he started up his new Web site, PHPDeveloper
.org, to share the latest happenings and opinions from other PHPers all around
the Web. Chris has written for PHP publications such as php|architect and the
International PHP Magazine on topics ranging from geocoding to trackbacks.
He also was a coauthor of PHP String Handling (Wrox Press, 2003).

Chris lives in Dallas, Texas, with his wife and works for a large natural gas
distributor maintaining their Web site and developing Web applications in PHP.

v

Contents
Acknowledgments . xiii
Introduction . xv

 Chapter 1 Working with Strings . 1
1.1 Controlling String Case . 2
1.2 Checking for Empty String Values . 3
1.3 Removing Characters from the Ends of a String . 4
1.4 Removing Whitespace from Strings . 5
1.5 Reversing Strings . 6
1.6 Repeating Strings . 7
1.7 Truncating Strings . 8
1.8 Converting Between ASCII Characters and Codes . 9
1.9 Splitting Strings into Smaller Chunks . 10
1.10 Comparing Strings for Similarity . 11
1.11 Parsing Comma-Separated Lists . 12
1.12 Parsing URLs . 13
1.13 Counting Words in a String . 14
1.14 Spell-Checking Words in a String . 15
1.15 Identifying Duplicate Words in a String . 18
1.16 Searching Strings . 19
1.17 Counting Matches in a String . 21
1.18 Replacing Patterns in a String . 22
1.19 Extracting Substrings . 24
1.20 Extracting Sentences from a Paragraph . 26
1.21 Generating String Checksums . 27
1.22 Encrypting Strings (One-Way Encryption) . 28
1.23 Encrypting Strings (Two-Way Encryption) . 29
1.24 Generating Pronounceable Passwords . 31
1.25 Generating Unpronounceable Passwords . 32

 v i P H P P r o g r a m m i n g S o l u t i o n s

 Chapter 2 Working with Numbers . 35
2.1 Generating a Number Range . 36
2.2 Rounding a Floating Point Number . 37
2.3 Finding the Smallest or Largest Number in an Unordered Series 39
2.4 Testing for Odd or Even Numbers . 40
2.5 Formatting Numbers with Commas . 41
2.6 Formatting Numbers as Currency Values . 42
2.7 Padding Numbers with Zeroes . 43
2.8 Converting Between Bases . 44
2.9 Converting Between Degrees and Radians . 46
2.10 Converting Numbers into Words . 47
2.11 Converting Numbers into Roman Numerals . 48
2.12 Calculating Factorials . 50
2.13 Calculating Logarithms . 51
2.14 Calculating Trigonometric Values . 52
2.15 Calculating Future Value . 54
2.16 Calculating Statistical Values . 55
2.17 Generating Unique Identifiers . 59
2.18 Generating Random Numbers . 60
2.19 Generating Prime Numbers . 61
2.20 Generating Fibonacci Numbers . 64
2.21 Working with Fractions . 66
2.22 Working with Complex Numbers . 68

 Chapter 3 Working with Dates and Times . 73
3.1 Getting the Current Date and Time . 74
3.2 Formatting Timestamps . 76
3.3 Checking Date Validity . 77
3.4 Converting Strings to Timestamps . 78
3.5 Checking for Leap Years . 80
3.6 Finding the Number of Days in a Month . 81
3.7 Finding the Day-in-Year or Week-in-Year Number for a Date 82
3.8 Finding the Number of Days or Weeks in a Year . 83
3.9 Finding the Day Name for a Date . 84
3.10 Finding the Year Quarter for a Date . 85
3.11 Converting Local Time to GMT . 86
3.12 Converting Between Different Time Zones . 87
3.13 Converting Minutes to Hours . 90

 C o n t e n t s v i i

3.14 Converting Between PHP and MySQL Date Formats 91
3.15 Comparing Dates . 93
3.16 Performing Date Arithmetic . 95
3.17 Displaying a Monthly Calendar . 97
3.18 Working with Extreme Date Values . 99

 Chapter 4 Working with Arrays . 101
4.1 Printing Arrays . 102
4.2 Processing Arrays . 103
4.3 Processing Nested Arrays . 104
4.4 Counting the Number of Elements in an Array . 106
4.5 Converting Strings to Arrays . 107
4.6 Swapping Array Keys and Values . 108
4.7 Adding and Removing Array Elements . 109
4.8 Extracting Contiguous Segments of an Array . 111
4.9 Removing Duplicate Array Elements . 112
4.10 Re-indexing Arrays . 113
4.11 Randomizing Arrays . 114
4.12 Reversing Arrays . 115
4.13 Searching Arrays . 116
4.14 Searching Nested Arrays . 118
4.15 Filtering Array Elements . 120
4.16 Sorting Arrays . 121
4.17 Sorting Multidimensional Arrays . 123
4.18 Sorting Arrays Using a Custom Sort Function . 124
4.19 Sorting Nested Arrays . 125
4.20 Merging Arrays . 127
4.21 Comparing Arrays . 128

 Chapter 5 Working with Functions and Classes . 131
5.1 Defining Custom Functions . 132
5.2 Avoiding Function Duplication . 133
5.3 Accessing External Variables from Within a Function 134
5.4 Setting Default Values for Function Arguments . 137
5.5 Processing Variable-Length Argument Lists . 138
5.6 Returning Multiple Values from a Function . 140
5.7 Manipulating Function Inputs and Outputs by Reference 141
5.8 Dynamically Generating Function Invocations . 143
5.9 Dynamically Defining Functions . 144

 v i i i P H P P r o g r a m m i n g S o l u t i o n s

5.10 Creating Recursive Functions . 145
5.11 Defining Custom Classes . 147
5.12 Automatically Executing Class Initialization and Deinitialization Commands 149
5.13 Deriving New Classes from Existing Ones . 153
5.14 Checking If Classes and Methods Have Been Defined 155
5.15 Retrieving Information on Class Members . 158
5.16 Printing Instance Properties . 162
5.17 Checking Class Antecedents . 163
5.18 Loading Class Definitions on Demand . 164
5.19 Comparing Objects for Similarity . 166
5.20 Copying Object Instances . 167
5.21 Creating Statically-Accessible Class Members . 170
5.22 Altering Visibility of Class Members . 172
5.23 Restricting Class Extensibility . 173
5.24 Overloading Class Methods . 175
5.25 Creating “Catch-All” Class Methods . 178
5.26 Auto-Generating Class API Documentation . 182

 Chapter 6 Working with Files and Directories . 185
6.1 Testing Files and Directories . 186
6.2 Retrieving File Information . 187
6.3 Reading Files . 188
6.4 Reading Line Ranges from a File . 190
6.5 Reading Byte Ranges from a File . 193
6.6 Counting Lines, Words, and Characters in a File . 194
6.7 Writing Files . 196
6.8 Locking and Unlocking Files . 197
6.9 Removing Lines from a File . 200
6.10 Processing Directories . 203
6.11 Recursively Processing Directories . 204
6.12 Printing Directory Trees . 206
6.13 Copying Files . 208
6.14 Copying Remote Files . 209
6.15 Copying Directories . 210
6.16 Deleting Files . 211
6.17 Deleting Directories . 212
6.18 Renaming Files and Directories . 214
6.19 Sorting Files . 214

 C o n t e n t s i x

6.20 Searching for Files in a Directory . 216
6.21 Searching for Files in PHP’s Default Search Path . 218
6.22 Searching and Replacing Patterns Within Files . 219
6.23 Altering File Extensions . 220
6.24 Finding Differences Between Files . 221
6.25 “Tailing” Files . 223
6.26 Listing Available Drives or Mounted File Systems . 224
6.27 Calculating Disk Usage . 225
6.28 Creating Temporary Files . 227
6.29 Finding the System Temporary Directory . 228
6.30 Converting Between Relative and Absolute File Paths 229
6.31 Parsing File Paths . 230

 Chapter 7 Working with HTML and Web Pages . 233
7.1 Displaying Text Files . 234
7.2 Highlighting PHP Syntax . 235
7.3 Wrapping Text . 236
7.4 Activating Embedded URLs . 237
7.5 Protecting Public E-mail Addresses . 238
7.6 Generating Tables . 240
7.7 Generating Random Quotes . 242
7.8 Generating Hierarchical Lists . 243
7.9 Using Header and Footer Templates . 246
7.10 Charting Task Status with a Progress Bar . 247
7.11 Dynamically Generating a Tree Menu . 253
7.12 Dynamically Generating a Cascading Menu . 258
7.13 Calculating Script Execution Times . 264
7.14 Generating Multiple Web Pages from a Single Template 265
7.15 Caching Script Output . 268
7.16 Paginating Content . 272
7.17 Detecting Browser Type and Version . 276
7.18 Triggering Browser Downloads . 278
7.19 Redirecting Browsers . 279
7.20 Reading Remote Files . 280
7.21 Extracting URLs . 281
7.22 Generating HTML Markup from ASCII Files . 282
7.23 Generating Clean ASCII Text from HTML Markup . 284
7.24 Generating an HTML Tag Cloud . 285

 x P H P P r o g r a m m i n g S o l u t i o n s

 Chapter 8 Working with Forms, Sessions, and Cookies 291
8.1 Generating Forms . 292
8.2 Processing Form Input . 294
8.3 Combining a Form and Its Result Page . 295
8.4 Creating Drop-Down Lists . 297
8.5 Creating Dependent Drop-Down Lists . 298
8.6 Validating Form Input . 300
8.7 Validating Numbers . 304
8.8 Validating Alphabetic Strings . 306
8.9 Validating Alphanumeric Strings . 307
8.10 Validating Credit Card Numbers . 308
8.11 Validating Telephone Numbers . 310
8.12 Validating Social Security Numbers . 312
8.13 Validating Postal Codes . 313
8.14 Validating E-mail Addresses . 314
8.15 Validating URLs . 316
8.16 Uploading Files Through Forms . 317
8.17 Preserving User Input Across Form Pages . 325
8.18 Protecting Form Submissions with a CAPTCHA . 335
8.19 Storing and Retrieving Session Data . 339
8.20 Deleting Session Data . 340
8.21 Serializing Session Data . 341
8.22 Sharing Session Data . 342
8.23 Storing Objects in a Session . 344
8.24 Storing Sessions in a Database . 346
8.25 Creating a Session-Based Shopping Cart . 351
8.26 Creating a Session-Based User Authentication System 356
8.27 Protecting Data with Sessions . 360
8.28 Storing and Retrieving Cookies . 361
8.29 Deleting Cookies . 362
8.30 Bypassing Protocol Restrictions on Session and Cookie Headers 363
8.31 Building GET Query Strings . 364
8.32 Extracting Variables from a URL Path . 365

 Chapter 9 Working with Databases . 367
9.1 Working with MySQL . 369
9.2 Working with PostgreSQL . 372
9.3 Working with SQLite . 374
9.4 Working with Sybase . 376

 C o n t e n t s x i

9.5 Working with Oracle . 378
9.6 Working with Microsoft SQL Server . 379
9.7 Working with ODBC . 381
9.8 Writing Database-Independent Code . 382
9.9 Retrieving the Last-Inserted Record ID . 385
9.10 Counting Altered Records . 387
9.11 Protecting Special Characters . 388
9.12 Limiting Query Results . 390
9.13 Using Prepared Statements . 392
9.14 Performing Transactions . 395
9.15 Executing Multiple SQL Commands at Once . 398
9.16 Storing and Retrieving Binary Data . 400
9.17 Caching Query Results . 405

 Chapter 10 Working with XML . 409
10.1 Retrieving Node and Attribute Values . 410
10.2 Modifying Node and Attribute Values . 413
10.3 Processing XML . 414
10.4 Creating XML . 417
10.5 Adding or Removing XML Nodes . 419
10.6 Collapsing Empty XML Elements . 421
10.7 Counting XML Element Frequency . 422
10.8 Filtering XML Nodes by Namespace . 424
10.9 Filtering XML Nodes with XPath . 425
10.10 Validating XML . 426
10.11 Transforming XML . 428
10.12 Exporting Data to XML . 429
10.13 Working with RDF Site Summaries . 432
10.14 Using the Google Web APIs . 435
10.15 Using the Amazon E-Commerce Service . 440
10.16 Creating Trackbacks . 444

 Chapter 11 Working with Different File Formats and Network Protocols 447
11.1 Pinging Remote Hosts . 448
11.2 Tracing Network Routes . 449
11.3 Performing WHOIS Queries . 450
11.4 Performing DNS Queries . 451
11.5 Mapping Names to IP Addresses . 452
11.6 Performing IP-Based Geographic Lookups . 453

 x i i P H P P r o g r a m m i n g S o l u t i o n s

11.7 Transferring Files over FTP . 456
11.8 Accessing POP3 Mailboxes . 457
11.9 Generating and Sending E-mail . 459
11.10 Generating and Sending MIME E-mail . 461
11.11 Generating and Sending E-mail with Attachments 464
11.12 Parsing Comma-Separated Files . 465
11.13 Converting Between ASCII File Formats . 467
11.14 Creating PDF Files . 468
11.15 Creating ZIP Archives . 470
11.16 Creating TAR Archives . 472
11.17 Resizing Images . 474
11.18 Working with Image Metadata . 475
11.19 Monitoring Web Pages . 477

 Chapter 12 Working with Exceptions and Other Miscellanea 481
12.1 Handling Exceptions . 482
12.2 Defining Custom Exceptions . 484
12.3 Using a Custom Exception Handler . 486
12.4 Suppressing Error Display . 489
12.5 Customizing Error Display . 490
12.6 Logging Errors . 492
12.7 Checking Version Information . 494
12.8 Altering PHP’s Run-Time Configuration . 495
12.9 Checking Loaded Extensions . 496
12.10 Using Strict Standards . 497
12.11 Profiling PHP Scripts . 498
12.12 Debugging PHP Scripts . 502
12.13 Benchmarking PHP Scripts . 505
12.14 Creating PHP Bytecode . 507
12.15 Creating Standalone PHP Executables . 509
12.16 Localizing Strings . 511
12.17 Executing External Programs . 513
12.18 Using an Interactive Shell . 514
12.19 Using Unit Tests . 515

 Index . 523

xiii

Acknowledgments

This book was written over the course of a (long!) two years, under some
fairly tight deadlines. Fortunately, I was aided immeasurably in the process
by a diverse group of people, all of whom played an important role in

getting this book into your hands.
First and foremost, I’d like to thank my wife, the most important person in my

life. Putting up with me can’t be easy, yet she does it with grace, intelligence, and
humor—something for which I will always be grateful. This book is dedicated to her.

The editorial and marketing team at McGraw-Hill has been wonderful to work
with, as usual. This is my third book with them, and they seem to get better and
better with each one. Acquisitions coordinator Mandy Canales, technical editor
Chris Cornutt, and editorial director Wendy Rinaldi all guided this book through
the development process. I’d like to thank them for their expertise, dedication, and
efforts on my behalf.

Finally, for making the entire book-writing process more enjoyable than it
usually is, thanks to: Patrick Quinlan, Ian Fleming, Bryan Adams, the Stones, MAD
Magazine, Scott Adams, FHM, Gary Larson, VH1, George Michael, Kylie Minogue,
Buffy, Farah Malegam, FM 107.9, Stephen King, Shakira, Anahita Marker, Park
End, John le Carre, Barry White, Robert Crais, Robert B. Parker, Baz Luhrmann,
Stefy, Anna Kournikova, Swatch, Gaim, Ling’s Pavilion, Tonka, HBO, Ferrari, Mark
Twain, Tim Burton, Harish Kamath, John Sandford, the Tube, Dido, Google.com,
The Matrix, Lee Child, Quentin Tarantino, Alfred Hitchcock, Woody Allen, the
St. Hugh’s College bops, Michael Schumacher, Mambo’s and Tito’s, Easyjet,
Humphrey Bogart, the Library Bar, Brix, Urvashi Singh, 24, Amazon.com, U2,
The Three Stooges, Pacha, Oscar Wilde, Punch, Daniel Craig, Kelly Clarkson, Scott
Turow, Slackware Linux, Calvin and Hobbes, Blizzard Entertainment, Otto, Pablo
Picasso, Popeye and Olive, The West Wing, Santana, Rod Stewart, and all my friends,
at home and elsewhere.

This page intentionally left blank

xv

Introduction

If you’re reading this book, you probably already know what PHP is—one of
the world’s most popular programming languages for Web application develop-
ment. Widely available and backed by the support of a vociferous and enthusi-

astic user community, the language was in use on more than 20 million Web sites at
the end of 2006…and that number is only expected to grow!

Personally, I’ve always believed the reason for PHP’s popularity to be fairly
simple: It has the unique distinction of being the only open-source server-side
scripting language that’s both easy to learn and extremely powerful to use. Unlike
most modern server-side languages, PHP uses clear, simple syntax and delights in
non-obfuscated code; this makes it easy to read and understand, and encourages
rapid application development. And then of course, there’s cost and availability—
PHP is available free of charge on the Internet, for a variety of platforms and
architectures, including UNIX, Microsoft Windows, and Mac OS, as well as for most
Web servers.

For these reasons, and many more, developers are flocking to PHP in droves.
Their managers aren’t complaining either—using the PHP platform helps
organizations benefit from the cost savings that accompany community-driven
software, and simultaneously deliver high-quality products by using community-
generated, well-tested PHP widgets to reduce development and deployment time.

Where does this book come in? Well, PHP has hundreds of built-in functions,
classes, and extensions; filtering and analyzing these to identify the most appropriate
strategy to deal a particular problem is often beyond developers new to the language,
especially those working under tight project deadlines. With this book in hand,
developers no longer need to worry about this; PHP Programming Solutions offers
ready-made solutions to 250+ commonly encountered problems, making use of both
native and external libraries to teach developers the most effective way to use PHP
in their development projects.

 x v i P H P P r o g r a m m i n g S o l u t i o n s

Overview
PHP Programming Solutions is a full-fledged developer guide with two primary
goals: to deliver solutions to commonly encountered problems, and to educate
developers about the wide array of built-in functions and ready-made PHP widgets
available to them. Task-based categorization makes it easy to locate solutions, and
each section comes with working code, a detailed explanation, and applicable usage
tips and guidelines. The solutions described use both PHP’s native functions and off-
the-shelf PEAR classes.

PHP Programming Solutions includes coverage of a wide variety of categories,
including string and number manipulation, input validation and security,
authentication, caching, XML parsing, database abstraction, and more. The solutions
are intended to (1) simplify and shorten the application development cycle; (2)
reduce test time; (3) improve quality; and (4) provide you, the developer, with the
tools you need to quickly solve real PHP problems with minimal time and fuss.

A Word About PHP, PEAR, and PECL
One of the nice things about a community-supported language such as PHP is the
access it offers to hundreds of creative and imaginative developers across the world.
Within the PHP community, the fruits of this creativity may be found in PEAR, the
PHP Extension and Application Repository (http://pear.php.net/), and
PECL, the PHP Extension Community Library (http://pecl.php.net/),
which contains hundreds of ready-made widgets and extensions that developers can
use to painlessly add new functionality to PHP.

Using these widgets is often a more efficient alternative to rolling your own code,
which is why every chapter in PHP Programming Solutions includes between four
and ten listings that use PEAR/PECL widgets to solve the defined problem, be it
creating an HTML progress bar to track uploads or recursively scanning a directory
tree for files matching a particular regular expression. Many of these problems can
be solved “by hand,” but often that’s an inefficient approach when a ready-made
PEAR class already exists. This book attempts to make such classes more accessible/
visible to developers and educate them about some of the hidden jewels in the PEAR
and PECL repositories.

Audience
PHP Programming Solutions is intended for both novice and intermediate
developers. To this end, chapters are structured such that they start out by solving
fairly easy problems, and then proceed to more difficult/complex ones. This is
deliberately done to give inexperienced PHP developers the fundamental knowledge
needed to understand the more complex code listings further along in the chapter.

If you’re an experienced PHP developer—say, if you’ve been using PHP for two
years or more—it’s quite likely that you’ll find this book much less useful (than the
reader segments described previously). Nevertheless, you will certainly find some
listings that will intrigue you. Here’s a teaser:

� Using a CAPTCHA to protect form submissions (8.18).

� Working with the Standard PHP Library (4.3).

� Charting task status with a dynamically-updating HTML progress bar (7.10).

� Finding out how much resource each line of your PHP script consumes (12.11).

� Extracting thumbnails from digital photos (11.18).

� Using SOAP to manually generate blog trackbacks (10.16).

� Localizing your PHP applications (12.16).

� And lots more!

Pre-requisites and Assumptions
In order to use the listings in this book, you will need a functioning PHP 5.x
installation, ideally with an Apache 2.x Web server and a MySQL 5.x database
server. Many of the listings in this book make use of external (free!) classes and
extensions; you will almost certainly need to download these classes, or recompile
your PHP build to activate the necessary extensions.

This book also assumes you have some prior knowledge of PHP, as well as
familiarity with Hypertext Markup Language (HTML), Cascading Style Sheets
(CSS), Structured Query Language (SQL), Extensible Markup Language (XML),
and client-side scripting. If you’re completely new to PHP, this is probably not
the first book you should read—instead, consider working your way through the

 I n t r o d u c t i o n x v i i

 x v i i i P H P P r o g r a m m i n g S o l u t i o n s

introductory PHP tutorials at http://www.php.net/tut.php and http://
www.melonfire.com/community/columns/trog/archives
.php?category=PHP, or purchasing a beginner guide such as How to Do
Everything with PHP and MySQL (McGraw-Hill, 2005; http://www
.everythingphpmysql.com/), and then return to this title.

Organization
This book is organized as both a tutorial and a reference guide, so you can read it
any way you like.

� If you’re not very experienced with PHP, you might fi nd it easier to read the
problems and their solutions sequentially, so that you learn basic techniques
in a structured manner. This approach is recommended for users new to the
language.

� If you’ve already used PHP, or if you’re experienced in another programming
language and are switching to PHP, you might prefer to use this book as
a desktop reference, fl ipping it open on an as-needed basis to read about
specifi c problems and their solutions. (The extensive index at the back of
this book is designed specifi cally for this sort of quick lookup.)

Here’s a quick preview of what each chapter in PHP Programming Solutions
contains:

Chapter 1, “Working with Strings” discusses common problems when working
with strings in PHP. Some of the problems discussed include removing unnecessary
whitespace, finding and replacing string patterns, counting and extracting string
segments, identifying duplicate words, encrypting text, and generating string
passwords.

Chapter 2, “Working with Numbers” discusses number manipulation in PHP.
Some of the problems discussed include converting number bases; calculating
trigonometric values; working with complex numbers and fractions; generating
prime numbers; and translating numbers into words in different languages.

Chapter 3, “Working with Dates and Times” discusses common issues when
working with temporal values in PHP. Some of the problems discussed include
converting between time zones; calculating the number of days in a month or year;
performing date arithmetic; and working with arbitrarily large date values.

Chapter 4, “Working with Arrays” discusses PHP arrays. It includes listings for
recursively traversing and searching a series of nested arrays, sorting arrays by more
than one key, filtering array elements by user-defined criteria, and swapping array
keys and values.

Chapter 5, “Working with Functions and Classes” discusses problems
encountered when defining and using functions and classes in PHP. Some of the
problems solved include using variable-length argument lists and default arguments;
checking class ancestry; overloading class methods; cloning and comparing objects;
using abstract classes; and adjusting class member visibility.

Chapter 6, “Working with Files and Directories” is all about PHP’s interaction
with the file system. Solutions are included for tasks such as searching and replacing
patterns within files; comparing file contents; extracting specific lines or bytes from
files; recursively processing directories; and converting files between UNIX and
MS-DOS formats.

Chapter 7, “Working with HTML and Web Pages” discusses common tasks
related to using PHP in a Web application. It includes listings for finding and turning
text URLs into HTML hyperlinks; generating Dynamic HTML (DHTML) menu
trees from a database; visually displaying the progress of server tasks; and caching
and paginating content.

Chapter 8, “Working with Forms, Sessions, and Cookies” discusses common
problems of input validation, security, and data persistence. Listings are included for
storing and retrieving session variables; authenticating users and protecting pages
from unauthorized access; building a session-based shopping cart; and creating
persistent objects.

Chapter 9, “Working with Databases” discusses solutions for common
problems involving PHP and databases. It includes listings for retrieving a subset
of an SQL result set; writing portable database code; performing transactions;
protecting special characters in query strings; and storing binary data in a table.

Chapter 10, “Working with XML” discusses common problems related
to using PHP with XML. It includes listings for processing node and attribute
values; validating XML against Document Type Definitions (DTDs) or Schemas;
transforming XML with XSLT style sheets; parsing RSS feeds; and interfacing with
Simple Object Access Protocol (SOAP) services.

Chapter 11, “Working with Different File Formats and Network Protocols”
is all about interfacing the language with as many servers, protocols, and formats as
possible. It includes listings for connecting to FTP servers; reading mail in online
mailboxes; querying DNS and WHOIS servers; extracting thumbnails from digital
photographs; dynamically generating PDF files; and creating e-mail messages with
attachments.

 I n t r o d u c t i o n x i x

 x x P H P P r o g r a m m i n g S o l u t i o n s

Chapter 12, “Working with Exceptions and Other Miscellanea” discusses
common problems related to exception handling and error processing. It also
includes solutions for profiling and benchmarking your PHP scripts; executing
external programs from within PHP; altering the PHP configuration at run time;
creating compiled PHP bytecode; and localizing PHP applications.

Companion Web Site
You can find the PHP code for every single solution in this book on the companion
Web site, at http://www.php-programming-solutions.com. Code
listings are organized by chapter and problem number, and may be directly
downloaded and installed to your development environment.

1

CHAPTER

1
Working with Strings

IN THIS CHAPTER:
 1.1 Controlling String Case
 1.2 Checking for Empty String Values
 1.3 Removing Characters from the

Ends of a String
 1.4 Removing Whitespace from Strings
 1.5 Reversing Strings
 1.6 Repeating Strings
 1.7 Truncating Strings
 1.8 Converting Between ASCII Characters

and Codes
 1.9 Splitting Strings into Smaller Chunks
1.10 Comparing Strings for Similarity
1.11 Parsing Comma-Separated Lists
1.12 Parsing URLs

1.13 Counting Words in a String
1.14 Spell-Checking Words in a String
1.15 Identifying Duplicate Words in a String
1.16 Searching Strings
1.17 Counting Matches in a String
1.18 Replacing Patterns in a String
1.19 Extracting Substrings
1.20 Extracting Sentences from a Paragraph
1.21 Generating String Checksums
1.22 Encrypting Strings (One-Way Encryption)
1.23 Encrypting Strings (Two-Way Encryption)
1.24 Generating Pronounceable Passwords
1.25 Generating Unpronounceable Passwords

 2 P H P P r o g r a m m i n g S o l u t i o n s

If you’re like most novice PHP developers, you probably have only a passing
acquaintance with PHP’s string functions. Sure, you know how to print output
to a Web page, and you can probably split strings apart and glue them back

together again. But there’s a lot more to PHP’s string toolkit than this: PHP has more
than 175 string manipulation functions, and new ones are added on a regular basis.
Ever wondered what they were all for?

If you have, you’re going to be thrilled with the listings in this chapter. In addition
to offering you a broad overview of PHP’s string manipulation capabilities, this
chapter discusses many other tasks commonly associated with strings in PHP—
removing unnecessary whitespace, finding and replacing string patterns, counting and
extracting string segments, identifying duplicate words, encrypting text and generating
string passwords. Along the way, you’ll find out a little more about those mysterious
string functions, and also learn a few tricks to help you write more efficient code.

1.1 Controlling String Case

Problem
You want to force a string value to upper- or lowercase.

Solution
Use the strtoupper() or strtolower() functions:

<?php

// define string

$rhyme = "And all the king's men couldn't put him together again";

// uppercase entire string

// result: "AND ALL THE KING'S MEN COULDN'T PUT HIM TOGETHER AGAIN"

$ucstr = strtoupper($rhyme);

echo $ucstr;

// lowercase entire string

// result: "and all the king's men couldn't put him together again"

$lcstr = strtolower($rhyme);

echo $lcstr;

?>

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 3

Comments
When it comes to altering the case of a string, PHP makes it easy with four built-in
functions. Two of them are illustrated previously: the strtoupper() function
uppercases all the characters in a string, while the strtolower() function lowercases
all the characters in a string.

For more precise control, consider the ucfirst() function, which capitalizes the
first character of a string (good for sentences), and the ucwords() function, which
capitalizes the first character of every word in the string (good for titles). Here’s an
example:

<?php

// define string

$rhyme = "and all the king's men couldn't put him together again";

// uppercase first character of string

// result: "And all the king's men couldn't put him together again"

$ucfstr = ucfirst($rhyme);

echo $ucfstr;

// uppercase first character of every word of string

// result: "And All The King's Men Couldn't Put Him Together Again"

$ucwstr = ucwords($rhyme);

echo $ucwstr;

?>

1.2 Checking for Empty String Values

Problem
You want to check if a string value contains valid characters.

Solution
Use a combination of PHP’s isset() and trim() functions:

<?php

// define string

$str = " ";

 4 P H P P r o g r a m m i n g S o l u t i o n s

// check if string is empty

// result: "Empty"

echo (!isset($str) || trim($str) == "") ? "Empty" : "Not empty";

?>

Comments
You’ll use this often when working with form data, to see if a required form field
contains valid data or not. The basic technique is simple: use isset() to verify that
the string variable exists, then use the trim() function to trim whitespace from the
edges and equate it to an empty string. If the test returns true, it’s confirmation that
the string contains no value.

NOTE

It’s instructive to note that many developers use PHP’s empty() function for this purpose.
This isn’t usually a good idea, because empty() will return true even if the string passed to it
contains the number 0 (PHP treats 0 as Boolean false). So, in the following illustration, the
script will produce the result "Empty" even though the string variable actually contains data.

<?php

// define string

$str = "0";

// check if string is empty

// result: "Empty"

echo (empty($str)) ? "Empty" : "Not empty";

?>

1.3 Removing Characters from the Ends of a String

Problem
You want to remove the first/last n characters from a string.

Solution
Use the substr() function to slice off the required number of characters from the
beginning or end of the string:

<?php

// define string

$str = "serendipity";

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 5

// remove first 6 characters

// result: "ipity"

$newStr = substr($str, 6);

echo $newStr;

// remove last 6 characters

// result: "seren"

$newStr = substr($str, 0, -6);

echo $newStr;

?>

Comments
The substr() function enables you to slice and dice strings into smaller strings. It
typically accepts three arguments, of which the last is optional: the string to act on,
the position to begin slicing at, and the number of characters to return from its start
position. A negative value for the third argument tells PHP to remove characters
from the end of the string.

1.4 Removing Whitespace from Strings

Problem
You want to remove all or some whitespace from a string, or compress multiple
spaces in a string.

Solution
Use a regular expression to find and replace multiple whitespace characters with a
single one:

<?php

// define string

$str = " this is a string with lots of emb e dd ↵
ed whitespace ";

// trim the whitespace at the ends of the string

// compress the whitespace in the middle of the string

// result: "this is a string with lots of emb e dd ed whitespace"

$newStr = ereg_replace('[[:space:]]+', ' ', trim($str));

echo $newStr;

?>

 6 P H P P r o g r a m m i n g S o l u t i o n s

Comments
There are two steps involved in performing this task. First, use the trim() function
to delete the unnecessary whitespace from the ends of the string. Next, use the ereg_
replace() function to find multiple whitespace characters in the string and replace
them with a single space. The end result is a string with all extra whitespace removed.

Alternatively, remove all the whitespace from a string, by altering the replacement
string used by ereg_replace(). The following variant illustrates this:

<?php

// define string

$str = " this is a string with lots of emb e dd ↵
ed whitespace ";

// remove all whitespace from the string

// result: "thisisastringwithlotsofembeddedwhitespace"

$newStr = ereg_replace('[[:space:]]+', '', trim($str));

echo $newStr;

?>

1.5 Reversing Strings

Problem
You want to reverse a string.

Solution
Use the strrev() function:

<?php

// define string

$cards = "Visa, MasterCard and American Express accepted";

// reverse string

// result: "detpecca sserpxE naciremA dna draCretsaM ,asiV"

$sdrac = strrev($cards);

echo $sdrac;

?>

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 7

Comments
It’s extremely simple, this “give it a string, and strrev() gives it back to you in
reverse” task. But despite the fact that it’s nothing to write home about, strrev()
is often used to perform some advanced tasks. See the listing in “1.20: Extracting
Sentences from a Paragraph” for an example.

1.6 Repeating Strings

Problem
You want to repeat a string n times.

Solution
Use the str_repeat() function:

<?php

// define string

$laugh = "ha ";

// repeat string

// result: "ha ha ha ha ha ha ha ha ha ha "

$rlaugh = str_repeat($laugh, 10);

echo $rlaugh;

?>

Comments
PHP’s str_repeat() function is equivalent to Perl’s x operator: it repeats a string
a fixed number of times. The first argument to str_repeat() is the string to be
replicated; the second is the number of times to replicate it.

The str_repeat() function can come in quite handy if you need to print a
boundary line of special characters across your output page—for example, an
unbroken line of dashes or spaces. To see this in action, view the output of the
following code snippet in your browser—it displays a line of Ø characters across the
page by continuously printing the HTML character code Ø:

<?php

// define string

$special = "Ø";

 8 P H P P r o g r a m m i n g S o l u t i o n s

// repeat string

$rspecial = str_repeat($special, 62);

echo $rspecial;

?>

1.7 Truncating Strings

Problem
You want to truncate a long string to a particular length, and replace the truncated
characters with a custom placeholder—for example, with ellipses.

Solution
Use the substr() function to truncate the string to a specified length, and append
the custom placeholder to the truncated string:

<?php

function truncateString($str, $maxChars=40, $holder="...") {

 // check string length

 // truncate if necessary

 if (strlen($str) > $maxChars) {

 return trim(substr($str, 0, $maxChars)) . $holder;

 } else {

 return $str;

 }

}

// define long string

$str = "Just as there are different flavors of client-side scripting,↵
there are different languages that can be used on

the server as well.";

// truncate and print string

// result: "Just as there are different flavours of..."

echo truncateString($str);

// truncate and print string

// result: "Just as there are di >>>"

echo truncateString($str, 20, " >>>");

?>

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 9

Comments
The user-defined function truncateString() accepts three arguments: the string
to truncate, the length at which to truncate it (default 40 characters), and the custom
character sequence to use at the point of termination (default …). Within the function,
the strlen() function first checks if the string is over or under the permissible limit.
If it’s over the limit, the substr() function slices off the bottom end of the string,
and the placeholder is appended to the top end.

1.8 Converting Between ASCII Characters and Codes

Problem
You want to retrieve the American Standard Code for Information Interchange
(ASCII) code corresponding to a particular character, or vice versa.

Solution
Use the ord() function to get the ASCII code for a character:

<?php

// define character

$char = "\r";

// retrieve ASCII code

// result: 13

$asc = ord($char);

echo $asc;

?>

Use the chr() function to get the character corresponding to an ASCII code:

<?php

// define ASCII code

$asc = 65;

// retrieve character

// result: "A"

$char = chr($asc);

echo $char;

?>

 1 0 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP’s ord() function retrieves the ASCII code corresponding to a particular character
(or the first character, if the argument to ord() contains more than one character). The
chr() function does the reverse, returning the character corresponding to a specific
ASCII code.

You can use chr() to generate the entire alphabet, if you like:

<?php

// result: "abcd...xyz"

for ($a=97; $a<(97+26); $a++) {

 echo chr($a);

}

?>

NOTE

You can find a list of ASCII characters and codes at http://www.lookuptables
.com/, and a Unicode table at http://www.unicode.org/Public/UNIDATA/
NamesList.txt.

1.9 Splitting Strings into Smaller Chunks

Problem
You want to break up a long string into smaller segments, each of a fixed size.

Solution
Use the str_split() function to break the string into fixed-length “chunks”:

<?php

// define string

$str = "The mice jumped over the cat, giggling madly ↵
as the moon exploded into green and purple confetti";

// define chunk size

$chunkSize = 11;

// split string into chunks

// result: [0] = The mice ju [1] = mped over t [2] = he cat, gig

// [3] = gling madly ...

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 1

$chunkedArr = str_split($str, $chunkSize);

print_r($chunkedArr);

?>

Comments
The str_split() function splits a string into fixed-length blocks and returns them
as elements of an array. By default, each “chunk” is one character long, but you
can alter this by passing the str_split() function a second argument defining the
chunk size (as in the previous snippet).

1.10 Comparing Strings for Similarity

Problem
You want to compare two strings to see if they sound similar.

Solution
Use the metaphone() function to test if the strings sound alike:

<?php

// compare strings

// result: "Strings are similar"

echo (metaphone("rest") == metaphone("reset")) ? ↵
"Strings are similar" : "Strings are not similar";

// result: "Strings are similar"

echo (metaphone("deep") == metaphone("dip")) ? ↵
"Strings are similar" : "Strings are not similar";

// result: "Strings are not similar"

echo (metaphone("fire") == metaphone("higher")) ? ↵
"Strings are similar" : "Strings are not similar";

?>

Comments
PHP’s metaphone() function—a more accurate version of its soundex()
function—is one of the more unique ones in the PHP string toolkit. Essentially, this
function produces a signature for the way a string sounds; similar-sounding strings

 1 2 P H P P r o g r a m m i n g S o l u t i o n s

produce the same signature. You can use this property to test two strings to see if
they’re similar—simply calculate the metaphone() keys of each string and see if
they’re the same.

TIP

The metaphone() function comes in handy in search queries, to find words similar to the
search string the user provides. Also consider the levenshtein() and similar_text()
functions to compare strings by character instead of pronunciation.

1.11 Parsing Comma-Separated Lists

Problem
You want to extract the individual elements of a comma-separated list.

Solution
Decompose the string into an array using the comma as the delimiter:

<?php

// define comma-separated list

$ingredientsStr = "butter, milk, sugar, salt, flour, caramel";

// decompose string into array

// using comma as delimiter

$ingredientsArr = explode(", ", $ingredientsStr);

// iterate over array

// print individual elements

foreach ($ingredientsArr as $i) {

 print $i . "\r\n";

}

?>

Comments
PHP’s explode() function makes it a single-step process to split a comma-separated
string list into an array of individual list elements. The previous listing clearly
illustrates this: the explode() function scans the string for the delimiter and cuts out
the pieces around it, placing them in an array. Once the list items have been extracted,
a foreach() loop is a good way to process the resulting array.

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 3

TIP

You can combine the elements of an array into a comma-separated string list—the reverse of the
listing above—with PHP’s implode() function.

1.12 Parsing URLs

Problem
You want to extract the protocol, domain name, path, or other significant component
of a URL.

Solution
Use the parse_url() function to automatically split the URL into its constituent
parts:

<?php

// define URL

$url = "http://www.melonfire.com:80/community/columns/trog/ ↵
article.php?id=79 &page=2";

// parse URL into associative array

$data = parse_url($url);

// print URL components

foreach ($data as $k=>$v) {

 echo "$k: $v \n";

}

?>

Comments
The parse_url() function is one of PHP’s more useful URL manipulation functions.
Pass it a Uniform Resource Locator (URL), and parse_url() will go to work splitting
it into its individual components. The resulting associative array contains separate keys
for the protocol, host name, port number, remote path, and GET arguments. You can
then easily access and use these keys for further processing—for example, the variable
$data['host'] will return the value www.melonfire.com.

 1 4 P H P P r o g r a m m i n g S o l u t i o n s

Consider the output of the previous script, which illustrates this:

scheme: http

host: www.melonfire.com

port: 80

path: /community/columns/trog/article.php

query: id=79&page=2

1.13 Counting Words in a String

Problem
You want to count the number of words in a sentence or paragraph.

Solution
Use a pattern to identify the individual words in the string, and then count how many
times that pattern recurs:

<?php

// define string

$text = "Fans of the 1980 group will have little trouble recognizing ↵
the group's distinctive synthesized sounds and hypnotic dance beats,↵
since these two elements are present in almost every song on the ↵
album; however, the lack of diversity and range is troubling, and I'm ↵
hoping we see some new influences in the next album. More

intelligent lyrics might also help.";

// decompose the string into an array of "words"

$words = preg_split('/[^0-9A-Za-z\']+/', $text, -1, ↵
PREG_SPLIT_NO_EMPTY);

// count number of words (elements) in array

// result: "59 words"

echo count($words) . " words";

?>

Comments
The preg_split() function is probably one of PHP’s most underappreciated
functions. This function accepts a Perl-compliant regular expression and a subject

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 5

string, and returns an array containing substrings matching the pattern. It’s a great
way of finding the matches in a string and placing them in a separate array for further
processing. Read more about the function and its arguments at http://www.php
.net/preg_split.

In this listing, the regular expression [^0-9A-Za-z\']+ is a generic pattern that
will match any word. All the words thus matched are fed into the $words array.
Counting the number of words in the string is then simply a matter of obtaining the
size of the $words array.

An alternative is to use the new str_word_count() function to perform this task.
Here’s an example:

<?php

// define string

$text = "Fans of the 1980 group will have little trouble recognizing ↵
the group's distinctive synthesized sounds and hypnotic dance beats,↵
since these two elements are present in almost every song on the ↵
album; however, the lack of diversity and range is troubling, and I'm

↵
hoping we see some new influences in the next album. More intelligent

lyrics might also help.";

// count number of words

// result: "58 words"

$numWords = str_word_count($text);

echo $numWords . " words";

?>

NOTE

Wondering about the discrepancy in the results above? The str_word_count() function
ignores numeric strings when calculating the number of words.

1.14 Spell-Checking Words in a String

Problem
You want to check if one or more words are spelled correctly.

 1 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PHP’s ext/pspell extension to check words against an internal dictionary:

<?php

// define string to be spell-checked

$str = "someun pleez helpp me i canot spel";

// check spelling

// open dictionary link

$dict = pspell_new("en", "british");

// decompose string into individual words

// check spelling of each word

$str = preg_replace('/[0-9]+/', '', $str);

$words = preg_split('/[^0-9A-Za-z\']+/', $str, -1, ↵
PREG_SPLIT_NO_EMPTY);

foreach ($words as $w) {

 if (!pspell_check($dict, $w)) {

 $errors[] = $w;

 }

}

// if errors exist

// print error list

if (sizeof($errors) > 0) {

 echo "The following words were wrongly spelt: " . ↵
implode(" ", $errors);

}

?>

NOTE

In order for this listing to work, PHP must be compiled with support for the pspell extension. (You
can obtain instructions from the PHP manual at http://www.php.net/pspell.)

Comments
The first task here is to identify the individual words in the sentence or paragraph. You
accomplish this using the preg_split() function and regular expression previously
discussed in the listing in the “1.13: Counting Words in a String” section. The
pspell_new() function is used to open a link to the appropriate language dictionary,
and the pspell_check() function iterates over the word list, checking each word

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 7

against the dictionary. For words that are incorrectly spelled, pspell_check()
returns false; these words are flagged, placed in an array and displayed in a list once
the process is complete.

With a little modification, you can have the previous listing check a file (rather
than a variable) for misspelled words, and even offer suggestions when it encounters
errors. Consider this variant, which illustrates the process and incorporates a call to
pspell_suggest() to recommend alternatives for each wrongly-spelled word:

<?php

// define file to be spell-checked

$file = "badspelling.txt";

// check spelling

// open dictionary link

$dict = pspell_new("en", "british", "", "", PSPELL_FAST);

// open file

$fp = fopen ($file, 'r') or die ("Cannot open file $file");

// read file line by line

$lineCount = 1;

while ($line = fgets($fp, 2048)) {

 // clean up trailing whitespace

 $line = trim($line);

 // decompose line into individual words

 // check spelling of each word

 $line = preg_replace('/[0-9]+/', '', $line);

 $words = preg_split('/[^0-9A-Za-z\']+/', $line, -1, ↵
PREG_SPLIT_NO_EMPTY);

 foreach ($words as $w) {

 if (!pspell_check($dict, $w)) {

 if (!is_array($errors[$lineCount])) {

 $errors[$lineCount] = array();

 }

 array_push($errors[$lineCount], $w);

 }

 }

 $lineCount++;

}

 1 8 P H P P r o g r a m m i n g S o l u t i o n s

// close file

fclose($fp);

// if errors exist

if (sizeof($errors) > 0) {

 // print error list, with suggested alternatives

 echo "The following words were wrongly spelt: \n";

 foreach ($errors as $k => $v) {

 echo "Line $k: \n";

 foreach ($v as $word) {

 $opts = pspell_suggest($dict, $word);

 echo "\t$word (" . implode(', ', $opts) . ")\n";

 }

 }

}

?>

NOTE

It’s important to remember that pspell_check() returns false on numeric strings. This can
result in numerous false positives if your string contains numbers by themselves. The previous
listing works around this problem by removing all the number sequences from the string/file
before passing it to pspell_check().

1.15 Identifying Duplicate Words in a String

Problem
You want to identify words that appear more than once in a string.

Solution
Decompose the string into individual words, and then count the occurrences of each
word:

<?php

// define string

$str = "baa baa black sheep";

// trim the whitespace at the ends of the string

$str = trim($str);

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 9

// compress the whitespace in the middle of the string

$str = ereg_replace('[[:space:]]+', ' ', $str);

// decompose the string into an array of "words"

$words = explode(' ', $str);

// iterate over the array

// count occurrences of each word

// save stats to another array

foreach ($words as $w) {

 $wordStats[strtolower($w)]++;

}

// print all duplicate words

// result: "baa"

foreach ($wordStats as $k=>$v) {

 if ($v >= 2) { print "$k \r\n"; }

}

?>

Comments
The first task here is to identify the individual words in the sentence or paragraph. You
accomplish this by compressing multiple spaces in the string, and then decomposing
the sentence into words with explode(), using a single space as [the] delimiter.
Next, a new associative array, $wordStats, is initialized and a key is created within
it for every word in the original string. If a word occurs more than once, the value
corresponding to that word’s key in the $wordStats array is incremented by 1.

Once all the words in the string have been processed, the $wordStats array will
contain a list of unique words from the original string, together with a number
indicating each word’s frequency. It is now a simple matter to isolate those keys with
values greater than 1, and print the corresponding words as a list of duplicates.

1.16 Searching Strings

Problem
You want to search a string for a particular pattern or substring.

 2 0 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use a regular expression with PHP’s ereg() function:

<?php

// define string

$html = "I'm tired and so I must go

home now";

// check for match

// result: "Match"

echo ereg("(.*)+", $html) ? "Match" : "No match";

?>

Use a regular expression with PHP’s preg_match() function:

<?php

// define string

$html = "I'm tired and so I must go

home now";

// check for match

// result: "Match"

echo preg_match("/(.*?)<\/b>/i", $html) ? "Match" : "No match";

?>

Comments
When it comes to searching for matches within a string, PHP offers the ereg()
and preg_match() functions, which are equivalent: both functions accept a regular
expression and a string, and return true if the string contains one or more matches
to the regular expression. Readers familiar with Perl will usually prefer the preg_
match() function, as it enables them to use Perl-compliant regular expressions and,
in some cases, is faster than the ereg() function.

TIP

For case-insensitive matching, use the eregi() function instead of the ereg() function.

TIP

Read more about regular expressions at http://www.melonfire.com/community/
columns/trog/article.php?id=2.

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 1

1.17 Counting Matches in a String

Problem
You want to find out how many times a particular pattern occurs in a string.

Solution
Use PHP’s preg_match_all() function:

<?php

// define string

$html = "I'm tired and so I must go

home now";

// count occurrences of bold text in string

// result: "2 occurrence(s)"

preg_match_all("/(.*?)<\/b>/i", $html, &$matches);

echo sizeof($matches[0]) . " occurrence(s)";

?>

Comments
The preg_match_all() function tests a string for matches to a particular pattern,
and returns an array containing all the matches. If you need the total number of
matches, simply check the size of the array with the sizeof() function.

For simpler applications, also consider the substr_count() function, which
counts the total number of occurrences of a substring within a larger string. Here’s
a brief example:

<?php

// define string

$text = "ha ha ho hee hee ha ho hee hee ho ho ho ha hee";

// count occurrences of "hee " in string

// result: "5 occurrence(s)"

echo substr_count($text, "hee") . " occurrence(s)";

?>

 2 2 P H P P r o g r a m m i n g S o l u t i o n s

1.18 Replacing Patterns in a String

Problem
You want to replace all/some occurrences of a pattern or substring within a string
with something else.

Solution
Use a regular expression in combination with PHP’s str_replace() function (for
simple patters):

 <?php

// define string

$str = "Michael says hello to Frank";

// replace all instances of "Frank" with "Crazy Dan"

// result: "Michael says hello to Crazy Dan"

$newStr = str_replace("Frank", "Crazy Dan", $str);

echo $newStr;

?>

For more complex patters, use a regular expression in combination with PHP’s
preg_replace() function:

<?php

// define string

$html = "I'm tired and so I must go ↵
home now";

// replace all bold text with italics

// result: "I'm <i>tired</i> and so I <i>must</i> go

home now"

$newStr = preg_replace("/(.*?)<\/b>/i", "<i>\\1</i>", $html);

echo $newStr;

?>

Comments
For simple applications that don’t need complex pattern matching or regular
expressions, consider PHP’s str_replace() function. You can’t use regular

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 3

expressions with this function—all it enables you to do is replace one (or more)
substrings with one (or more) replacement strings. Although it’s limited, it can be
faster than either ereg_replace() or preg_replace() in situations which don’t
call for advanced expression processing.

PHP’s preg_replace() function takes the preg_match() function a step
forward—in addition to searching for regular expression matches in the target string,
it can also replace each match with something else. The preg_replace() function
accepts a Perl-compliant regular expression, and its return value is the original
string after all substitutions have been made. If no matches could be found, the
original string is returned. Note also the use of a back-reference (\\1) in the preg_
replace() version of the listing; this back-reference serves as a placeholder for text
enclosed within the pattern to be matched.

By default, both functions replace all occurrences of the search string with the
replacement string. With preg_replace(), however, you can control the number
of matches that are replaced by passing the function an optional fourth parameter.
Consider the following snippet, which limits the number of replacements to 1 (even
though there are two valid matches):

<?php

// define string

$html = "I'm tired and so I must go

 home now";

// replace all bold text with italics

// result: "I'm <i>tired</i> and so I must go

 home now"

$newStr = preg_replace("/(.*?)<\/b>/i", "<i>\\1</i>", $html, 1);

echo $newStr;

?>

As an interesting aside, you can find out the number of substrings replaced by
str_replace() by passing the function an optional fourth parameter, which counts
the number of replacements. Here’s an illustration:

<?php

// define string

$str = "Michael says hello to Frank. Frank growls at Michael. Michael ↵
feeds Frank a bone.";

// replace all instances of "Frank" with "Crazy Dan"

$newStr = str_replace("Frank", "Crazy Dan", $str, &$counter);

 2 4 P H P P r o g r a m m i n g S o l u t i o n s

// print number of replacements

// result: "3 replacement(s)"

echo "$counter replacement(s)";

?>

TIP

You can perform multiple search-replace operations at once with str_replace(), by using
arrays for both the search and replacement strings.

1.19 Extracting Substrings

Problem
You want to extract the substring preceding or following a particular match.

Solution
Use the preg_split() function to split the original string into an array delimited by
the match term, and then extract the appropriate array element(s):

<?php

// define string

$html = "Just when you begin to think the wagon of ↵
Vietnam-grounded movies is grinding to a slow halt, ↵
you're hit squarely in the face with another ↵
one. However, while other movies depict the gory and glory of war ↵
and its effects, this centers on the ↵
psychology of troopers before ↵
they're led to battle.";

// split on <a> element

$matches = preg_split("/<a(.*?)>(.*?)<\/a>/i", $html);

// extract substring preceding first match

// result: "Just when...of"

echo $matches[0];

// extract substring following last match

// result: "of troopers...battle."

echo $matches[sizeof($matches)-1];

?>

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 5

Comments
The preg_split() function accepts a regular expression and a search string, and
uses the regular expression as a delimiter to split the string into segments. Each
of these segments is placed in an array. Extracting the appropriate segment is then
simply a matter of retrieving the corresponding array element.

This is clearly illustrated in the previous listing. To extract the segment preceding
the first match, retrieve the first array element (index 0); to extract the segment
following the last match, retrieve the last array element.

If your match term is one or more regular words, rather than a regular expression,
you can accomplish the same task more easily by explode()-ing the string into an
array against the match term and extracting the appropriate array elements. The next
listing illustrates this:

<?php

// define string

$str = "apples and bananas and oranges and pineapples and lemons";

// define search pattern

$search = " and ";

// split string into array

$matches = explode($search, $str);

// count number of segments

$numMatches = sizeof($matches);

// extract substring preceding first match

// result: "apples"

echo $matches[0];

// extract substring between first and fourth matches

// result: "bananas and oranges and pineapples"

echo implode($search, array_slice($matches, 1, 3));

// extract substring following last match

// result: "lemons"

echo $matches[$numMatches-1];

?>

 2 6 P H P P r o g r a m m i n g S o l u t i o n s

1.20 Extracting Sentences from a Paragraph

Problem
You want to extract the first or last sentence from a paragraph.

Solution
Use the strtok() function to break the paragraph into sentences, and then extract
the appropriate sentence:

<?php

// define string

$text = "This e-mail message was sent from a notification-only address! ↵
It cannot accept incoming e-mail. Please do not reply to this message. ↵
Do you understand?";

// extract first sentence

// result: "This e-mail message was sent from a notification-only ↵
address"

$firstSentence = strtok($text, ".?!");

echo $firstSentence;

// extract last sentence

// result: "Do you understand"

$lastSentence = strrev(strtok(strrev(trim($text)), ".?!"));

echo $lastSentence;

?>

Comments
To extract the first or last sentence of a paragraph, it is necessary to first break the
string into individual sentences, using the common sentence terminators—a period,
a question mark, and an exclamation mark—as delimiters. PHP’s strtok() function
is ideal for this: it splits a string into smaller segments, or tokens, based on a list
of user-supplied delimiters. The first token obtained in this manner will be the first
sentence of the paragraph.

Extracting the last sentence is a little more involved, and there are quite a few
ways to do it. The previous listing uses one of the simplest: it reverses the paragraph

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 7

and extracts the last sentence as though it were the first, again using strtok(). The
extracted segment is then re-reversed using the strrev() function.

1.21 Generating String Checksums

Problem
You want to obtain a hash signature for a string

Solution
Use PHP’s md5() or sha1() functions:

 <?php

// define string

$str = "two meters north, five meters west";

// obtain MD5 hash of string

// result: "7c00dcc2a1e4e89133b849a003448788"

$md5 = md5($str);

echo $md5;

// obtain SHA1 hash of string

// result: "d5db0063b0e2d4d7d33514e2da3743ce8daa44bf"

$sha1 = sha1($str);

echo $sha1;

?>

Comments
A hash signature is a lot like a fingerprint—it uniquely identifies the source that was
used to compute it. Typically, a hash signature is used to verify if two copies of a
string or file are identical in all respects; if both produce the same hash signature,
they can be assumed to be identical. A hash function, like PHP’s md5() or sha1()
function, accepts string input and produces a fixed-length signature (sometimes
called a checksum) that can be used for comparison or encryption. The md5()
function produces a 128-bit hash, while the sha1() function produces a 160-bit
hash. Read more at http://www.faqs.org/rfcs/rfc1321.html.

 2 8 P H P P r o g r a m m i n g S o l u t i o n s

1.22 Encrypting Strings (One-Way Encryption)

Problem
You want to encrypt a string using one-way encryption.

Solution
Use PHP’s crypt() function:

<?php

// define cleartext string

$password = "guessme";

// define salt

$salt = "rosebud";

// encrypt string

// result: "rouuR6YmPKTOE"

$cipher = crypt($password, $salt);

echo $cipher;

?>

Comments
PHP’s crypt() function accepts two parameters: the string to encrypt and a key
(or salt) to use for encryption. It then encrypts the string using the provided salt and
returns the encrypted string (or ciphertext). A particular combination of cleartext and
salt is unique—the ciphertext generated by crypt()-ing a particular string with a
particular salt remains the same over multiple crypt() invocations.

Because the crypt() function uses one-way encryption, there is no way to
recover the original string from the ciphertext. You’re probably wondering what use
this is—after all, what’s the point of encrypting something so that it can never be
decrypted? Well, one-way encryption does have its uses, most notably for password
verification: it’s possible to validate a previously-encrypted password against a
user’s input by re-encrypting the input with the same salt and checking to see if the
two pieces of ciphertext match. The next example illustrates this process:

<?php

// define cleartext string

$password = "guessme";

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 9

// define salt

$salt = "rosebud";

// encrypt string

$cipher = crypt($password, $salt);

// assume the user inputs this

$input = "randomguess";

// encrypt the input

// test it against the encrypted password

// result: "Passwords don't match"

echo ($cipher == crypt($input, $salt)) ? ↵
"Passwords match" : "Passwords don't match";

// now assume the user inputs this

$input = "guessme";

// encrypt the input

// test it against the encrypted password

// result: "Passwords match"

echo ($cipher == crypt($input, $salt)) ? ↵
"Passwords match" : "Passwords don't match";

?>

Here, the cleartext password is encrypted with PHP’s crypt() function and the
defined salt, with the result checked against the (encrypted) original password. If
the two match, it indicates that the supplied password was correct; if they don’t, it
indicates that the password was wrong.

1.23 Encrypting Strings (Two-Way Encryption)

Problem
You want to encrypt a string using two-way encryption.

Solution
Use PHP’s ext/mcrypt extension to perform two-way encryption or decryption:

<?php

// function to encrypt data

 3 0 P H P P r o g r a m m i n g S o l u t i o n s

function encryptString($plaintext, $key) {

 // seed random number generator

 srand((double) microtime() * 1000000);

 // encrypt string

 $iv = mcrypt_create_iv(↵
mcrypt_get_iv_size(MCRYPT_BLOWFISH, MCRYPT_MODE_CFB), ↵
MCRYPT_RAND);

 $cipher = mcrypt_encrypt(MCRYPT_BLOWFISH, $key, ↵
$plaintext, MCRYPT_MODE_CFB, $iv);

 // add IV to ciphertext

 return $iv . $cipher;

}

// function to decrypt data

function decryptString($ciphertext, $key) {

 // extract IV

 $iv = substr($ciphertext, 0,↵
mcrypt_get_iv_size(MCRYPT_BLOWFISH, MCRYPT_MODE_CFB));

 $cipher = substr($ciphertext, ↵
mcrypt_get_iv_size(MCRYPT_BLOWFISH, MCRYPT_MODE_CFB));

 // decrypt string

 return mcrypt_decrypt(MCRYPT_BLOWFISH, $key, $cipher,↵
MCRYPT_MODE_CFB, $iv);

}

// define cleartext string

$input = "three paces west, up the hill, turn nor-nor-west ↵
and fire through the left eye socket";

// define key

$key = "rosebud";

// returns encrypted string

$ciphertext = encryptString($input, $key);

echo $ciphertext;

// returns decrypted string

$cleartext = decryptString($ciphertext, $key);

echo $cleartext;

?>

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 3 1

NOTE

In order for this listing to work, PHP must be compiled with support for the mcrypt extension (you
can obtain instructions from the PHP manual at http://www.php.net/mcrypt).

Comments
The previous listing uses two user-defined functions: encryptString() and
decryptString(). Internally, both use functions provided by PHP’s ext/mcrypt
extension, which supports a wide variety of encryption algorithms (Blowfish, DES,
TripleDES, IDEA, Rijndael, Serpent, and others) and cipher modes (CBC, CFB,
OFB, and ECB). Both functions accept a string and a key, and use the latter to
encrypt or decrypt the former.

The encryptString() function begins by seeding the random number generator
and then generating an initialization vector (IV) with the mcrypt_create_iv()
function. Once an IV has been generated, the mcrypt_encrypt() function performs
the encryption using the supplied key. The encryption in this example uses the
Blowfish algorithm in CFB mode. The IV is prepended to the encrypted string; this
is normal and does not affect the security of the encryption.

The decryptString() function words in reverse, obtaining the IV size for the
selected encryption algorithm and mode with the mcrypt_get_iv_size() function
and then extracting the IV from the beginning of the encrypted string with the
substr() function. The IV, encrypted string, and key are then used by the mcrypt_
decrypt() function to retrieve the original cleartext string.

Read more about encryption algorithms and modes at http://en.wikipedia
.org/wiki/Encryption_algorithm.

1.24 Generating Pronounceable Passwords

Problem
You want to generate a pronounceable password.

Solution
Use PEAR’s Text_Password class:

<?php

// include Text_Password class

include "Text/Password.php";

 3 2 P H P P r o g r a m m i n g S o l u t i o n s

// create object

$tp = new Text_Password();

// generate pronounceable password

// result: "sawralaeje" (example)

$password = $tp->create();

echo $password;

?>

Comments
If you’re looking for a quick way to generate pronounceable passwords—perhaps for
a Web site authentication system—look no further than the PEAR Text_Password
class (available from http://pear.php.net/package/Text_Password). By
default, the class method create() generates a ten-character pronounceable password
using only vowels and consonants.

You can define a custom length for the password by passing an optional size
argument to the create() method, as follows:

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 5-character pronounceable password

// result: "ookel" (example)

$password = $tp->create(5);

echo $password;

?>

1.25 Generating Unpronounceable Passwords

Problem
You want to generate an unpronounceable password.

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 3 3

Solution
Use PEAR’s Text_Password class with some additional parameters:

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 7-character unpronounceable password

// result: "_nCx&h#" (example)

$password = $tp->create(7, 'unpronounceable');

echo $password;

?>

Comments
The PEAR Text_Password class (available from http://pear.php.net/
package/Text_Password) is designed specifically to generate both pronounceable
and unpronouceable passwords of varying lengths. To generate an unpronounceable
password made up of alphabets, numbers, and special characters, call the class method
create() with two additional flags: the desired password size and the keyword
unpronounceable (the default behavior is to generate pronounceable passwords ten
characters long).

If you’d like to restrict the characters that can appear in the password, you can
pass the create() method a third argument: either of the keywords 'numeric' or
'alphanumeric', or a comma-separated list of allowed characters. The following
code snippets illustrate this:

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 7-character unpronounceable password

// using only numbers

// result: "0010287" (example)

$password = $tp->create(7, 'unpronounceable', 'numeric');

echo $password;

?>

 3 4 P H P P r o g r a m m i n g S o l u t i o n s

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 12-character unpronounceable password

// using only letters and numbers

// result: "P44g62gk6YIp" (example)

$password = $tp->create(12, 'unpronounceable', 'alphanumeric');

echo $password;

?>

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 5-character unpronounceable password

// using a pre-defined character list

// result: "okjnn" (example)

$password = $tp->create(5, 'unpronounceable', 'i,j,k,l,m,n,o,p');

echo $password;

?>

35

CHAPTER

2
Working with Numbers

IN THIS CHAPTER:
 2.1 Generating a Number Range
 2.2 Rounding a Floating Point Number
 2.3 Finding the Smallest or Largest Number

in an Unordered Series
 2.4 Testing for Odd or Even Numbers
 2.5 Formatting Numbers with Commas
 2.6 Formatting Numbers as Currency Values
 2.7 Padding Numbers with Zeroes
 2.8 Converting Between Bases
 2.9 Converting Between Degrees and Radians
2.10 Converting Numbers into Words
2.11 Converting Numbers into Roman Numerals

2.12 Calculating Factorials
2.13 Calculating Logarithms
2.14 Calculating Trigonometric Values
2.15 Calculating Future Value
2.16 Calculating Statistical Values
2.17 Generating Unique Identifiers
2.18 Generating Random Numbers
2.19 Generating Prime Numbers
2.20 Generating Fibonacci Numbers
2.21 Working with Fractions
2.22 Working with Complex Numbers

 3 6 P H P P r o g r a m m i n g S o l u t i o n s

Numbers. You can’t get away from them. They’re always there, crawling
around in your application, needing constant care and attention. And the
more sophisticated the application is, the more demanding the numbers

become. Addition and subtraction isn’t good enough any more—now you have to
perform trigonometric operations on the numbers, draw graphs with them, make
them more readable with commas and padding, and yield to their logarithmic limits.
It’s almost enough to make you weep.

That’s where this chapter comes in. The solutions on the following pages range
from the simple to the complex, but all of them address common number manipulation
tasks. In the former category are listings for converting number bases; calculating
trigonometric values; checking whether numeric values are odd or even; and formatting
numbers for greater readability. In the latter category are listings to work with complex
numbers and fractions; calculate standard deviation, skewness, and frequency; generate
prime numbers using a technique invented by the ancient Greeks; and spell numbers as
words in different languages.

2.1 Generating a Number Range

Problem
You have two endpoints and want to generate a list of all the numbers between them.

Solution
Use PHP’s range() function:

<?php

// define range limits

$x = 10;

$y = 36;

// generate range as array

// result: (10, 11, 12...35, 36)

$range = range($x, $y);

print_r($range);

?>

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 3 7

Comments
The range() function accepts two arguments—a lower limit and an upper limit—
and returns an array containing all the integers between, and including, those limits.
You can also create a number range that steps over particular numbers, by passing
the step value to the function as a third, optional argument. The following example
illustrates this:

<?php

// define range limits

$x = 10;

$y = 30;

// generate range as array

// contains every third number

// result: (10, 13, 16, 19, 22, 25, 28)

$range = range($x, $y, 3);

print_r($range);

?>

A simple application of the range() function is to print a multiplication table. The
following listing illustrates how to do this, by generating all the numbers between 1
and 10 and then using the list to print a multiplication table for the number 5:

<?php

// print multiplication table

foreach (range(1, 10) as $num) {

 echo "5 x $num = " . (5 * $num) . "\n";

}

?>

TIP

You can also use range() to generate an array of sequential alphabetic characters, by passing
it letters as limits instead of numbers. See listing 6.26 for an example.

2.2 Rounding a Floating Point Number

Problem
You want to round off a floating-point number.

 3 8 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use the round() function:

<?php

// define floating point number

$num = (2/3);

// round to integer

// result: 1

$roundNum = round($num);

echo $roundNum . "\n";

// round to 1 decimal place

// result: 0.7

$roundNum = round($num, 1);

echo $roundNum . "\n";

// round to 3 decimal places

// result: 0.667

$roundNum = round($num, 3);

echo $roundNum;

?>

Comments
The round() function rounds a number to a specified number of decimal places.
Calling round() without the optional second argument makes it round to an integer
value (0 decimal places). When rounding to an integer, the round() function will
return the closest integer value. To force rounding to a lower or higher integer value,
use the ceil() or floor() functions instead, as follows:

<?php

// define floating point numbers

$num = (1/3);

$r = round($num);

$c = ceil($num);

$f = floor($num);

// result: "0 1 0"

echo "$r $c $f"

?>

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 3 9

2.3 Finding the Smallest or Largest
Number in an Unordered Series

Problem
You want to find the maximum or minimum value of a series of unordered numbers.

Solution
Arrange the numbers in sequence and then extract the endpoints of the sequence:

<?php

// define number series

$series = array(76, 7348, 56, 2.6, 189, 67.59, 17594, 2648, 1929.79,↵
54, 329, 820, -1.10, -1.101);

// sort array

sort($series);

// extract maximum/minimum value from sorted array

// result: "Minimum is -1.101 "

$min = $series[0];

echo "Minimum is $min ";

// result: "Maximum is 17594"

$max = $series[sizeof($series)-1];

echo "Maximum is $max";

?>

Comments
There are many different ways to find the smallest or largest value in a number series.
The previous listing demonstrates one of the simplest. The numbers are placed in
an array, and the sort() function is used to sort the array so that the numbers line
up sequentially. The smallest value will end up at the beginning of the list—the first
element of the array—while the largest will end up at the end of the list—the last
element of the array.

 4 0 P H P P r o g r a m m i n g S o l u t i o n s

2.4 Testing for Odd or Even Numbers

Problem
You want to find out if a number is odd or even.

Solution
Use PHP’s bitwise & operator:

<?php

// define number

$num = 31;

// see if number is odd or even

// result: "Number is odd"

echo (1&$num) ? "Number is odd" : "Number is even";↵
?>

Comments
For odd numbers expressed in binary format, the least significant digit is always 1,
whereas for even numbers, it is always 0. PHP’s bitwise & operator returns 1 if both of
its operands are equal to 1. Using these two principles, it’s easy to create a conditional
test for odd and even numbers.

If you don’t fully understand the listing above, take a look at http://www
.gamedev.net/reference/articles/article1563.asp for a tutorial on
bitwise manipulation. Alternatively, you can consider a different test, which involves
dividing the number by 2 and checking the remainder (with even numbers, the
remainder will be zero). This alternative is illustrated as follows:

<?php

// define number

$num = 10;

// see if number mod 2 returns a remainder

// result: "Number is even"

echo ($num % 2) ? "Number is odd" : "Number is even";

?>

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 4 1

2.5 Formatting Numbers with Commas

Problem
You want to make a large number more readable by using commas between groups
of thousands.

Solution
Use PHP’s number_format() function:

<?php

// define number

$amount = 3957459.7398;

// round and format number with commas

// result: "3,957,460"

$formattedAmount = number_format($amount);

echo $formattedAmount;

?>

Comments
The number_format() function is a great tool to use when formatting large integer
or floating-point numbers. When invoked with a single argument, it rounds up the
number if necessary and then inserts commas between every group of thousands.
Note that the output of the function is a string, not a number, and so it cannot be used
for further numeric manipulation.

If you have a floating-point number and don’t necessarily want to round it up to
an integer, you can pass number_format() a second argument, which will control
the number of decimals the formatted number should contain. Here’s an example:

<?php

// define number

$amount = 3957459.7398;

// format number with commas and 2 decimal places

// result: "3,957,459.74"

$formattedAmount = number_format($amount, 2);

echo $formattedAmount;

?>

 4 2 P H P P r o g r a m m i n g S o l u t i o n s

For certain numbers, you might also want to use a custom decimal and/or
thousands separator. You can accomplish this by passing number_format() two
additional arguments, the first for the decimal separator and the second for the
thousands separator. The next example illustrates this:

<?php

// define number

$amount = 3957459.7398;

// format number with custom separator

// result: "3'957'459,74"

$formattedAmount = number_format($amount, 2, ',', '\'');

echo $formattedAmount;

?>

2.6 Formatting Numbers as Currency Values

Problem
You want to format a number as per local or international currency conventions.

Solution
Define the target locale and then apply the appropriate monetary format via PHP’s
money_format() function:

<?php

// define currency amount (in INR)

$amount = 10000;

// display in INR

// result: "INR 10000"

setlocale(LC_MONETARY, 'en_IN');

$inr = money_format('%i', $amount);

echo $inr;

// display in US dollars (convert using 1 USD = 45 INR)

// result: "$ 222.22"

setlocale(LC_MONETARY, 'en_US');

$usd = money_format('%n', $amount/45);

echo $usd;

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 4 3

// display in euros (convert using 1 EUR = 52 INR)

// result:

setlocale(LC_MONETARY, 'fr_FR');

$eur = money_format('%i', $amount/52);

echo $eur;

?>

Comments
The previous listing takes a number and formats it so it conforms to Indian (INR),
American (US) and European (EUR) currency conventions. The setlocale()
function sets the locale, and hence the local conventions for currency display—notice
that the Indian and American locales differ in their placement of thousand separators,
while the European locale uses commas instead of decimals.

You can make further adjustments to the display using money_format()’s wide
array of format specifiers, listed at http://www.php.net/money_format. This
example uses the %n and %i specifiers, which represent the national currency symbol
and the three-letter international currency code respectively.

NOTE

The money_format() function is not available in the Windows version of PHP.

2.7 Padding Numbers with Zeroes

Problem
You want to format a number with leading or trailing zeroes.

Solution
Use the printf() or sprintf() function with appropriate format specifiers:

<?php

// result: 00012

printf("%05d", 12);

// result: 00169.000

printf("%09.3f", 169);

 4 4 P H P P r o g r a m m i n g S o l u t i o n s

// result: 00003475.986000

printf("%015.6f", 3475.986);

// result: 74390.99

printf("%02.2f", 74390.98647);

?>

Comments
PHP’s printf() and sprintf() functions are very similar to the printf() and
sprintf() functions that C programmers are used to, and they’re incredibly versatile
when it comes to formatting both string and numeric output. Both functions accept two
arguments, a series of format specifiers and the raw string or number to be formatted.
The input is then formatted according to the format specifiers and the output is either
displayed with printf() or assigned to a variable with sprintf().

Some common field templates are:

Specifier What It Means
%s String

%d Decimal number

%x Hexadecimal number

%o Octal number

%f Float number

You can also combine these field templates with numbers that indicate the number of
digits to display—for example, %1.2f implies that only two digits should be displayed
after the decimal point. Adding 0 as the padding specifier tells the function to zero-pad
the numbers to the specified length. You can use an alternative padding character by
prefixing it with a single quote ('). Read more at http://www.php.net/sprintf.

2.8 Converting Between Bases

Problem
You want to convert a number to a different base—binary, octal, hexadecimal, or custom.

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 4 5

Solution
Use PHP’s decbin(), decoct(), dexhec(), or base_convert() functions:

<?php

// define number

$num = 100;

// convert to binary

// result: "Binary: 1100100 "

$bin = decbin($num);

echo "Binary: $bin ";

// convert to octal

// result: "Octal: 144 "

$oct = decoct($num);

echo "Octal: $oct ";

// convert to hexadecimal

// result: "Hexadecimal: 64 "

$hex = dechex($num);

echo "Hexadecimal: $hex ";

// convert to base 6;

// result: "Base6: 244"

$base6 = base_convert($num, 10, 6);

echo "Base6: $base6";

?>

Comments
PHP comes with a number of functions to convert a number from one base to another.
The previous listing takes a base-10 (decimal) number and converts it to binary,
octal, and hexadecimal with the decbin(), decoct(), and dechex() functions
respectively. To convert in the opposite direction, use the bindec(), octdec(), and
hexdec() functions.

If you need to convert a number to or from a custom base, use the base_convert()
function, which accepts three arguments: the number, the base it’s currently in, and the
base it’s to be converted to.

A common application of base conversion routines like this involves obtaining
hexadecimal values for RGB (red, green, blue) color codes, suitable for use in

 4 6 P H P P r o g r a m m i n g S o l u t i o n s

Hypertext Markup Language (HTML) Web pages. The following snippet illustrates
a function that does just this with the dechex() function:

<?php

// function to convert RGB colors to their hex values

function rgb2hex($r, $g, $b) {

 return sprintf("#%02s%02s%02s", dechex($r), dechex($g), ↵
dechex($b));

}

// result: "#00ff40"

$hex = rgb2hex(0,255,64);

echo $hex;

?>

2.9 Converting Between Degrees and Radians

Problem
You want to convert an angle measurement from degrees to radians, or vice versa.

Solution
Use PHP’s rad2deg() and deg2rad() functions:

<?php

// result: "90 degrees = 1.57079632679 radians "

$degrees = 90;

$radians = deg2rad($degrees);

echo "$degrees degrees = $radians radians ";

// result: "1.57079632679491 radians = 90 degrees"

$radians = 1.57079632679491;

$degrees = rad2deg($radians);

echo "$radians radians = $degrees degrees";

?>

Comments
The formula to convert an angle measurement in degrees (D) to radians (R) is D = R
* 180/pi. Fortunately, PHP comes with a function to do it for you automatically:

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 4 7

the deg2rad() function. Or, if you have a value that’s already in radians, you can
convert it to degrees with the rad2deg() function.

2.10 Converting Numbers into Words

Problem
You want to print a number as one or more literal words.

Solution
Use PEAR’s Numbers_Words class:

<?php

// include Numbers_Words class

include "Numbers/Words.php";

// create object

$nw = new Numbers_Words();

// print numbers in words

// result: "190000000 in words is one hundred ninety million."

echo "190000000 in words is " . $nw->toWords(190000000) . ".\n";

// result: "637 in words is six hundred thirty-seven."

echo "637 in words is " . $nw->toWords(637) . ".\n";

// result: "-8730 in words is minus eight thousand seven hundred ↵
thirty."

echo "-8730 in words is " . $nw->toWords(-8730) . ".";

?>

Comments
The PEAR Numbers_Words class, available from http://pear.php.net/
package/Numbers_Words, is designed specifically for the purpose of spelling out
a number as one or more words. The class’ toWords() method accepts a positive
or negative integer and outputs the corresponding string. As the previous listing
illustrates, it can handle both extremely large values and negative integers.

 4 8 P H P P r o g r a m m i n g S o l u t i o n s

You aren’t limited to English-language strings either—the Numbers_Words class can
translate your number into a variety of different languages, including German, French,
Hungarian, Italian, Spanish, Russian, and Polish. The following listing illustrates this:

<?php

// include Numbers_Words class

include "Numbers/Words.php";

// create object

$nw = new Numbers_Words();

// print numbers in words in different languages

// French - result: "78 in French is soixante-dix-huit."

echo "78 in French is " . $nw->toWords(78, 'fr') . ".\n";

// Spanish - result: "499 in Spanish is cuatrocientos noventa ↵
y nueve." echo "499 in Spanish is " . $nw->toWords(499, 'es') . ".\n";

// German - result: "-1850000 in German is minus en million ↵
// otte hundrede halvtreds tusinde."

echo "-1850000 in German is " . $nw->toWords(-1850000, 'dk') . ".";

?>

You can obtain a complete list of supported languages from the package archive,
and it’s fairly easy to create a translation table for your own language as well.

NOTE

The toWords() method does not support decimal values. To convert decimal values and
fractions, consider the toCurrency() method instead.

2.11 Converting Numbers into Roman Numerals

Problem
You want to print a number as a Roman numeral.

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 4 9

Solution
Use PEAR’s Numbers_Roman class:

<?php

// include Numbers_Roman class

include "Numbers/Roman.php";

// create object

$nr = new Numbers_Roman();

// result: "5 in Roman is V."

echo "5 in Roman is " . $nr->toNumeral(5) . ".\n";

// result: "318 in Roman is CCCXVIII".

echo "318 in Roman is " . $nr->toNumeral(318) . ".";

?>

Comments
The PEAR Numbers_Roman class, available from http://pear.php.net/
package/Numbers_Roman, translates regular numbers into their Roman equivalents.
The class’ toNumeral() method accepts an integer and outputs the corresponding
Roman numeral.

You can print a series of Roman numerals by combining the toNumeral()
method with a loop, as shown here:

<?php

// include Numbers_Roman class

include "Numbers/Roman.php";

// create object

$nr = new Numbers_Roman();

// print numbers 1 to 100 as Roman numerals

// result: "I II III IV...XCVIII XCIX C"

foreach (range(1, 100) as $x) {

 print $nr->toNumeral($x) . " ";

}

?>

 5 0 P H P P r o g r a m m i n g S o l u t i o n s

You can also reverse the process with the toNumber() method, illustrated in the
following code snippet:

<?php

// include Numbers_Roman class

include "Numbers/Roman.php";

// create object

$nr = new Numbers_Roman();

// print CVII as an Arabic number

// result: "CVII = 107"

echo "CVII = " . $nr->toNumber('CVII');

?>

NOTE

The toNumeral() method does not support decimal or negative values.

2.12 Calculating Factorials

Problem
You want to find the factorial of a number.

Solution
Use a loop to count down and multiply the number by all the numbers between itself
and 1:

<?php

// define number

$num = 5;

// initialize variable

$factorial = 1;

// calculate factorial

// by multiplying the number by all the

// numbers between itself and 1

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 5 1

// result: "Factorial of 5 is 120"

for ($x=$num; $x>=1; $x--) {

 $factorial = $factorial * $x;

}

echo "Factorial of $num is $factorial";

?>

Comments
A factorial of a number n is the product of all the numbers between n and 1. The
easiest way to calculate it is with a for() loop, one that starts at n and counts down
to 1. Each time the loop runs, the previously calculated product is multiplied by the
current value of the loop counter. The end result is the factorial of the number n.

2.13 Calculating Logarithms

Problem
You want to find the logarithm of a number.

Solution
Use PHP’s log() or log10() function:

<?php

// find natural log of 6

// result: "Natural log of 6 is 1.79175946923. "

$logBaseE = log(6);

echo "Natural log of 6 is $logBaseE. ";

// find base-10 log of 5

// result: "Base10 log of 5 is 0.698970004336."

$logBase10 = log10(5);

echo "Base10 log of 5 is $logBase10.";

?>

Comments
Logarithms come in handy when you are solving differential equations, and most
scientific calculators enable you to easily calculate the natural and base-10 logarithm

 5 2 P H P P r o g r a m m i n g S o l u t i o n s

of any number. PHP is no different—its log() and log10() functions return the
natural and base-10 logarithm of their input argument.

To calculate the logarithm for any other base, you would normally use the logarithmic
property log

Y
X = log

b
X / log

b
Y. In PHP, you can instead simply specify the

base as a second parameter to log(), as shown here:

<?php

// find binary (base-2) log of 10

// result: "Binary log of 10 is 3.32192809489"

$logBase2 = log(10, 2);

echo "Binary log of 10 is $logBase2";

?>

The exponential function does the reverse of the natural logarithmic function, and
is expressed in PHP through the exp() function. The following listing illustrates its
usage:

<?php

// find e ^ $num

// result: "Exponent of 0.69315 is 2"

$exponentE = exp(0.69315);

echo "Exponent of 0.69315 is " . round($exponentE, 2);

?>

2.14 Calculating Trigonometric Values

Problem
You want to perform a trigonometric calculation, such as finding the sine or cosine
of an angle.

Solution
Use one of PHP’s numerous trigonometric functions:

<?php

// define angle

$angle = 45;

// calculate sine

// result: "Sine: 0.850903524534 "

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 5 3

$sine = sin($angle);

echo "Sine: $sine \n";

// calculate cosine

// result: "Cosine: 0.525321988818 "

$csine = cos($angle);

echo "Cosine: $csine \n";

// calculate tangent

// result: "Tangent: 1.61977519054 "

$tangent = tan($angle);

echo "Tangent: $tangent \n";

// calculate arc sine

// result: "Arc sine: -1.#IND "

$arcSine = asin($angle);

echo "Arc sine: $arcSine \n";

// calculate arc cosine

// result: "Arc cosine: -1.#IND "

$arcCsine = acos($angle);

echo "Arc cosine: $arcCsine \n";

// calculate arc tangent

// result: "Arc tangent: 1.54857776147 "

$arcTangent = atan($angle);

echo "Arc tangent: $arcTangent \n";

// calculate hyperbolic sine

// result: "Hyperbolic sine: 1.74671355287E+019 "

$hypSine = sinh($angle);

echo "Hyperbolic sine: $hypSine \n";

// calculate hyperbolic cosine

// result: "Hyperbolic cosine: 1.74671355287E+019 "

$hypCsine = cosh($angle);

echo "Hyperbolic cosine: $hypCsine \n";

// calculate hyperbolic tangent

// result: "Hyperbolic tangent: 1 "

$hypTangent = tanh($angle);

echo "Hyperbolic tangent: $hypTangent \n";

?>

 5 4 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP comes with a rich toolkit of functions designed specifically to assist in
trigonometry. With these functions, you can calculate sines, cosines, and tangents for
any angle. While there aren’t yet built-in functions to calculate secants, cosecants,
and cotangents, it’s still fairly easy to calculate these inversions with the functions
that are available. PHP also includes functions to calculate hyperbolic and inverse
hyperbolic sines, cosines, and tangents; read more about these at http://www.php
.net/math.

2.15 Calculating Future Value

Problem
You want to find the future value of a sum of money, given a fixed interest rate.

Solution
Calculate the future value by compounding the sum over various periods using the
supplied interest rate:

<?php

// define present value

$presentValue = 100000;

// define interest rate per compounding period

$intRate = 8;

// define number of compounding periods

$numPeriods = 6;

// calculate future value assuming compound interest

// result: "100000 @ 8 % over 6 periods becomes 158687.43"

$futureValue = round($presentValue * pow(1 + ($intRate/100),↵
$numPeriods), 2);

echo "$presentValue @ $intRate % over $numPeriods periods becomes ↵
$futureValue";

?>

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 5 5

Comments
The formula to calculate the future value (F) of a particular amount (P), given a fixed
interest rate (r) and a fixed number of years (n) is F = P(1 + r/100)n. Performing
the calculation in PHP is a simple matter of turning this formula into executable code.
Nevertheless, you’d be surprised how many novice programmers forget all about PHP’s
operator precedence rules and, as a result, generate incorrect results. The previous
listing uses braces to correctly define the order in which the variables are processed.

2.16 Calculating Statistical Values

Problem
You want to calculate statistical measures, such as variance or skewness, for a number set.

Solution
Use PEAR’s Math_Stats class:

<?php

// include Math_Stats class

include "Math/Stats.php";

// initialize object

$stats = new Math_Stats();

// define number series

$series = array(76, 7348, 56, 2.6, 189, 67.59, 17594, 2648, 1929.79,↵
54, 329, 820);

// connect object to series

$stats->setData($series);

// calculate complete statistics

$data = $stats->calcFull();

print_r($data);

?>

 5 6 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PEAR’s Math_Stats class, available from http://pear.php.net/package/Math_
Stats, is designed specifically to calculate statistical measures for a set of numbers.
This number set must be expressed as an array, and passed to the class’ setData()
method. The calcFull() method can then be used to generate a basic or expanded
set of statistics about the number set. The return value of this method is an associative
array, with keys for each statistical measure calculated. For example, the variable
$data['median'] would return the median of the number set.

To get a better idea of the kind of analysis performed, consider the following output
of the calcFull() method:

Array

(

 [min] => 2.6

 [max] => 17594

 [sum] => 31113.98

 [sum2] => 375110698.612

 [count] => 12

 [mean] => 2592.83166667

 [median] => 259

 [mode] => Array

 (

 [0] => 1929.79

 [1] => 820

 [2] => 2648

 [3] => 7348

 [4] => 17594

 [5] => 329

 [6] => 189

 [7] => 54

 [8] => 56

 [9] => 67.59

 [10] => 76

 [11] => 2.6

)

 [midrange] => 8798.3

 [geometric_mean] => 324.444468821

 [harmonic_mean] => 26.1106363977

 [stdev] => 5173.68679862

 [absdev] => 3301.9175

 [variance] => 26767035.0902

 [range] => 17591.4

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 5 7

 [std_error_of_mean] => 1493.51473294

 [skewness] => 2.02781206173

 [kurtosis] => 2.98190358339

 [coeff_of_variation] => 1.99538090541

 [sample_central_moments] => Array

 (

 [1] => 0

 [2] => 24536448.8327

 [3] => 280820044848

 [4] => 4.2858793901E+015

 [5] => 6.34511539688E+019

)

 [sample_raw_moments] => Array

 (

 [1] => 2592.83166667

 [2] => 31259224.8844

 [3] => 489107716046

 [4] => 8.23326983124E+015

 [5] => 1.42287015523E+020

)

 [frequency] => Array

 (

 [2.6] => 1

 [54] => 1

 [56] => 1

 [67.59] => 1

 [76] => 1

 [189] => 1

 [329] => 1

 [820] => 1

 [1929.79] => 1

 [2648] => 1

 [7348] => 1

 [17594] => 1

)

 [quartiles] => Array

 (

 [25] => 61.795

 [50] => 259

 [75] => 2288.895

)

 5 8 P H P P r o g r a m m i n g S o l u t i o n s

 [interquartile_range] => 2227.1

 [interquartile_mean] => 568.563333333

 [quartile_deviation] => 1113.55

 [quartile_variation_coefficient] => 94.7423947862

 [quartile_skewness_coefficient] => 0.822904225226

)

As the previous listing illustrates, calcFull() generates a complete set of statistics
about the data, including its mean, median, mode, and range; its variance and standard
deviation; its skewness, kurtosis, and moments; and its quartiles, inter-quartile range, and
quartile deviation. Normally, you’d need a fair bit of time with a calculator to calculate
these values; the Math_Stats class generates them for you quickly and accurately.

It’s also possible to generate a histogram and plot the frequency distribution of a data
set, with PEAR’s Math_Histogram package at http://pear.php.net/package/
Math_Histogram. The following listing illustrates this:

<?php

// include Math_Histogram class

include "Math/Histogram.php";

// define number series

$series = array(10,73,27,11,92,97,49,86,92,4,32,61,2,13,48,81,94,17,8);

// initialize an object

$hist = new Math_Histogram();

// connect class to data series

$hist->setData($series);

// define number of bins and upper/lower limits

$hist->setBinOptions(10,0,100);

// calculate frequencies

$hist->calculate();

// print as ASCII bar chart

echo $hist->printHistogram();

?>

Here, too, a number series is expressed as an array and passed to the setData()
and calculate() methods for processing. The number and size of the histogram
bins can be controlled with the setBinOptions() method. The printHistogram()
method displays an ASCII representation of the histogram, as shown here:

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 5 9

Histogram

 Number of bins: 10

 Plot range: [0, 100]

 Data range: [2, 97]

 Original data range: [2, 97]

BIN (FREQUENCY) ASCII_BAR (%)

10.000 (4) |**** (21.1%)

20.000 (3) |*** (15.8%)

30.000 (1) |* (5.3%)

40.000 (1) |* (5.3%)

50.000 (2) |** (10.5%)

60.000 (0) | (0.0%)

70.000 (1) |* (5.3%)

80.000 (1) |* (5.3%)

90.000 (2) |** (10.5%)

100.000 (4) |**** (21.1%)

NOTE

The Math_Histogram package supports both simple and cumulative histograms, as well as
histograms in three and four dimensions.

2.17 Generating Unique Identifiers

Problem
You want to generate a unique, random numeric identifier that cannot be easily guessed.

Solution
Use a combination of PHP’s uniqid(), md5(), and rand() functions:

<?php

// generate a random, unique ID

// result: "5542ec0a1928b99ef90cb87503094fe4" (example)

$id = md5(uniqid(rand(), true));

echo $id;

?>

 6 0 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP’s uniqid() function returns an alphanumeric string based on the current time
in microseconds, suitable for use in any operation or transaction that is keyed on a
unique alphanumeric string. Because the identifier is based on a time value, there is a
very slight possibility of two identical identifiers being generated at the same instant;
to reduce this possibility, add a random element to the procedure by combining the
call to uniqid() with a call to rand() and md5().

2.18 Generating Random Numbers

Problem
You want to generate one or more random numbers.

Solution
Use PHP’s rand() function:

<?php

// generate a random number

// result: 18785 (example)

echo rand();

// generate a random number between 0 and 100

// result: 4 (example)

echo rand(0, 100);

?>

Comments
Generating a random number in PHP is as simple as calling the rand() function. If
you’d optionally like to limit the random number to a specific range, you can pass
rand() the upper and lower limits of the range.

To obtain a random floating-point number, divide the random number produced
by a very large value. The getrandmax() function is a good choice here—it returns
the maximum value that rand() could possibly generate on your system. Here’s an
illustration:

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 6 1

<?php

// generate a random floating-point number

// result: 0.721182897427 (example)

echo rand()/getrandmax();

?>

If you need more than one random number, use rand() in combination with a
loop and array. Here’s an example:

<?php

// generate a series of 10 random numbers between 0 and 100

// result: "12 95 88 87 61 49 61 4 99 75" (example)

for ($x=0; $x<10; $x++) {

 echo rand(0, 100) . " ";

}

?>

2.19 Generating Prime Numbers
Problem
You want to generate a series of prime numbers, or find out if a particular number is
prime.

Solution
Use the Sieve of Eratosthenes to filter out all the numbers that are not prime and
display the rest:

<?php

// list all primes between 2 and some integer ↵
// using the Sieve of Erastothenes

function listPrimes($end) {

 // generate an array of all possible integers

 // between the first prime and the supplied limit

 $sieve = range(2, $end);

 // retrieve the size of the array

 $size = sizeof($sieve);

 6 2 P H P P r o g r a m m i n g S o l u t i o n s

 // reset internal array pointer to beginning of array

 reset($sieve);

 // iterate over the array

 while (list($key, $val) = each($sieve)) {

 // for each element

 // check if subsequent elements are divisible by it

 // remove them from the array if so

 for ($x=$key+1; $x<$size; $x++) {

 if ($sieve[$x] % $val == 0) {

 unset($sieve[$x]);

 }

 }

 }

 // at the end, elements left in array are primes

 return $sieve;

}

// list all the primes between 2 and 100

// result: "2 3 5 7...83 89 97"

echo implode(" ", listPrimes(100));

?>

Comments
A prime number is a number that has only two divisors: itself and 1. There are
quite a few ways to generate a sequence of prime numbers, but the method listed
previously is one of the oldest (and also one of the most efficient). Known as the
Sieve of Eratosthenes, after the Greek scholar of the same name, it essentially
requires you to perform three steps:

� List all the integers between 2 and some number n.

� Begin with the fi rst number in the list. Remove all the numbers from the list
that are (a) greater than it, and (b) multiples of it.

� Move to the next available number and repeat the process.

The numbers left behind after this filtering, or sieving, process will be prime
numbers—that is, numbers that cannot be divided by any other number except
themselves and 1.

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 6 3

NOTE

To get a clearer idea of how the Sieve of Eratosthenes works, list all the numbers between
2 and 50 on a sheet of paper and follow the steps described previously. Or visit http://
en.wikipedia.org/wiki/Sieve_of_Eratosthenes for a more detailed
explanation and analysis. For alternative ways of generating prime numbers, visit http://
www.olympus.net/personal/7seas/primes.html.

A variant of this listing involves checking if a particular number is prime. You can
accomplish this by dividing the number by all the numbers smaller than it (excluding 1)
and checking the remainder. If the remainder is 0 at any stage, it means that the number
was fully divisible and, hence, cannot be prime. Here’s a function that encapsulates
this logic:

<?php

// check if a number is a prime number

function testPrime($num) {

 // divide each number

 // by all numbers lower than it (excluding 1)

 // if even one such operation returns no remainder

 // the number is not a prime

 for ($x=($num-1); $x>1; $x--) {

 if (($num % $x) == 0) {

 return false;

 }

 }

 return true;

}

// test if 9 is prime

// result: "Number is not prime"

echo testPrime(9) ? "Number is prime" : "Number is not prime";

?>

Using the testPrime() function described previously, it’s easy to write a function
that satisfies another common requirement: listing the first n primes. Take a look:

<?php

// list first N primes

function getFirstNPrimes($n) {

 // define an empty array to store primes

 $primesArray = array();

 6 4 P H P P r o g r a m m i n g S o l u t i o n s

 // start with the first prime

 $count = 2;

 // sequentially test numbers

 // until the required number of primes is obtained

 while (sizeof($primesArray) < $n) {

 if (testPrime($count)) {

 $primesArray[] = $count;

 }

 $count++;

 }

 return $primesArray;

}

// list the first 90 primes

echo implode(" ", getFirstNPrimes(90));

?>

NOTE

The previous method can also be used as an alternative to the Sieve of Eratosthenes to generate
a list of prime numbers; however, it will be nowhere near as efficient. With the Sieve of
Eratosthenes, the pool of numbers under consideration continually diminishes in size as multiples
are eliminated; this speeds things up considerably. With the previous method, every number in the
given range has to be actively tested for “prime-ness” by dividing it by all the numbers before it;
as the numbers increase in value, so does the time it takes to test them.

2.20 Generating Fibonacci Numbers

Problem
You want to generate a series of Fibonacci numbers, or find out if a particular number
belongs to the Fibonacci sequence.

Solution
Define the first two numbers, and use a loop to calculate the rest:

<?php

// generate the first N Fibonacci numbers

function generateFibonacciNumbers($size) {

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 6 5

 // define array to hold Fibonacci numbers

 $fibonacciArray = array();

 $fibonacciArray[0] = 0; // by definition

 $fibonacciArray[1] = 1; // by definition

 // generate numbers

 for ($x=2; $x<=$size; $x++) {

 $fibonacciArray[$x] = $fibonacciArray[$x-2] + ↵
$fibonacciArray[$x-1];

 }

 // return array

 return $fibonacciArray;

}

// list the first 20 Fibonacci numbers

// result: "0 1 1 2 3 5 8...2584 4181 6765"

echo implode(" ", generateFibonacciNumbers(20));

?>

Comments
In the Fibonacci number sequence, every number is formed from the sum of the previ-
ous two numbers. The first few numbers in this sequence are 1, 1, 2, 3, 5, and 8. As the
previous listing illustrates, it’s fairly easy to convert this rule into working PHP code.

If you’d prefer, you can save yourself some time with PEAR’s Math_Fibonacci class,
from http://pear.php.net/package/Math_Fibonacci. This class comes with
a series() method that generates the first n numbers of the Fibonacci sequence, and a
term() method, which lets you find the nth term of the sequence. Both methods return
an object, which must be decoded with the toString() method. The following listing
illustrates this:

<?php

// include Math_Fibonacci class

include "Math/Fibonacci.php";

// list the first 20 Fibonacci numbers

// result: "0 1 1 2 3 5 8...4181 6765"

$series = Math_Fibonacci::series(20);

foreach ($series as $k=>$v) {

 print $v->toString() . " ";

}

 6 6 P H P P r o g r a m m i n g S o l u t i o n s

// calculate the 5th Fibonacci number

// result: 5

$fib5 = Math_Fibonacci::term(5);

print $fib5->toString();

?>

You can also test if a particular number belongs to the Fibonacci sequence, with
the isFibonacci() class method. The next listing illustrates:

<?php

// include Math_Fibonacci class

include "Math/Fibonacci.php";

// define number

$num = 21;

// check if number belongs to the Fibonacci sequence

// result: "Is a Fibonacci number"

echo Math_Fibonacci::isFibonacci(new Math_Integer($num)) ↵
? "Is a Fibonacci number" : "Is not a Fibonacci number";

?>

2.21 Working with Fractions

Problem
You want to perform a mathematical operation involving fractions.

Solution
Use PEAR’s Math_Fraction class:

<?php

// include Math_Fraction class

include "Math/Fraction.php";

// define a new fraction

$fract = new Math_Fraction(1,2);

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 6 7

// print as string

// result: "1/2 "

echo $fract->toString() . " \n";

// print as float

// result: 0.5

echo $fract->toFloat()

?>

Comments
A fraction is a number in the form a/b. In this form, a is called the numerator and b
is called the denominator. The denominator of a fraction can never be 0. Examples
of fractions include 1/3, 19/7, and 1.5/3.5.

PHP’s math toolkit doesn’t include functions for dealing with values represented
in fraction notation, so if you need to work with that type of notation, you’ll have to
rely entirely on PEAR’s Math_Fraction class at http://pear.php.net/package/
Math_Fraction. A fraction here is expressed as an object, generated by passing
the fraction’s numerator and denominator as arguments to the class constructor. Two
methods, toString() and toFloat(), take care of displaying the fraction, either as
a fraction or a floating-point value.

Of course, representing a fraction is only the tip of the iceberg—most of the time,
you’re going to want to perform mathematical operations on it. The accompanying
Math_FractionOp class provides a number of methods to support this requirement.
Take a look at the next listing, which creates two fraction objects and then performs
a variety of operations on them:

<?php

// include Math_Fraction class

include "Math/Fraction.php";

// include Math_FractionOp class

include "Math/FractionOp.php";

// define two fractions

$fract1 = new Math_Fraction(1,2);

$fract2 = new Math_Fraction(1,3);

// add the fractions

// result: "Sum: 5/6"

$obj = Math_FractionOp::add($fract1, $fract2);

echo "Sum: " . $obj->toString() . "\n";

 6 8 P H P P r o g r a m m i n g S o l u t i o n s

// subtract the fractions

// result: "Difference: 1/6"

$obj = Math_FractionOp::sub($fract1, $fract2);

echo "Difference: " . $obj->toString() . "\n";

// multiply the fractions

// result: "Product: 1/6"

$obj = Math_FractionOp::mult($fract1, $fract2);

echo "Product: " . $obj->toString() . "\n";

// divide the fractions

// result: "Quotient: 3/2"

$obj = Math_FractionOp::div($fract1, $fract2);

echo "Quotient: " . $obj->toString() . "\n";

// invert (reciprocal) a fraction

// result: "Reciprocal: 2/1"

$obj = Math_FractionOp::reciprocal($fract1);

echo "Reciprocal: " . $obj->toString() . "\n";

// compare the fractions

// returns -1 if LHS < RHS, 0 if LHS = RHS, 1 otherwise

// result: 1

echo Math_FractionOp::compare($fract1, $fract2);

?>

The add(), sub(), mult(), and div() methods take care of fraction addition,
subtraction, multiplication, and division respectively. The reciprocal() method
produces a new fraction by swapping the numerator and denominator of the original
one. Finally, the compare() method makes it possible to compare two fractions
and decide which one is larger. Each of these methods returns a new Math_Fraction
object; the actual value of this object must be retrieved using either the toString()
or toFloat() method discussed previously.

2.22 Working with Complex Numbers
Problem
You want to perform a mathematical operation involving complex numbers.

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 6 9

Solution
Use the PEAR Math_Complex class:

<?php

// include Math_Complex class

include "Math/Complex.php";

// define a new complex number

$complex = new Math_Complex(3,-5);

// as string

// result: "3-5i"

echo $complex->toString() . "\n";

// retrieve real part of complex number

// result: "Real part: 3"

echo "Real part: " . $complex->getReal() . "\n";

// retrieve imaginary part of complex number

// result: "Imaginary part: -5"

echo "Imaginary part: " . $complex->getIm() . "\n";

// retrieve norm of complex number

// result: "Norm: 5.83095189485"

echo "Norm: " . $complex->norm();

?>

Comments
A complex number is a number made up of two components: a real part and an
imaginary part. It is usually written as a + bi, where a and b are real numbers
and i is an imaginary number equal to the square root of –1. Examples of complex
numbers are 3+5i, 6–81i and 9–3i.

PHP’s math toolkit doesn’t include built-in functions for dealing with complex
numbers, so you’ll have to turn to PEAR’s add-on Math_Complex class, at http://
pear.php.net/package/Math_Complex. Here, a complex number object is first
generated by passing the number’s real and imaginary parts to the object constructor.
The object’s toString() method combines these two components and returns a
suitable-for-display string.

 7 0 P H P P r o g r a m m i n g S o l u t i o n s

You can also do the reverse—given a complex number object, you can break it
up into its components with the getReal() and getIm() methods, which retrieve
the real and imaginary components respectively. You can calculate the norm of the
number with the norm() method.

Once you’ve got a complex number object, the next step is usually to perform
mathematical operations with it. The accompanying Math_ComplexOp class provides
numerous methods to help you with this. The next listing illustrates these methods
by generating two complex number objects and performing mathematical operations
on them:

<?php

// include Math_Complex class

include "Math/Complex.php";

// include Math_ComplexOp class

include "Math/ComplexOp.php";

// define two complex numbers

$complex1 = new Math_Complex(3,2);

$complex2 = new Math_Complex(1,4);

// add the complex numbers

// result: "Sum: 4+6i"

$obj = Math_ComplexOp::add($complex1, $complex2);

echo "Sum: " . $obj->toString() . "\n";

// subtract the complex numbers

// result: "Difference: 2-2i"

$obj = Math_ComplexOp::sub($complex1, $complex2);

echo "Difference: " . $obj->toString() . "\n";

// multiply the complex numbers

// result: "Product: -5+14i"

$obj = Math_ComplexOp::mult($complex1, $complex2);

echo "Product: " . $obj->toString() . "\n";

// divide the complex numbers

// result: "Quotient: 0.647058823529 - 0.588235294118i"

$obj = Math_ComplexOp::div($complex1, $complex2);

echo "Quotient: " . $obj->toString() . "\n";

 C h a p t e r 2 : W o r k i n g w i t h N u m b e r s 7 1

// invert a complex number

// result: "Inverted value: 0.230769230769 - 0.153846153846i"

$obj = Math_ComplexOp::inverse($complex1);

echo "Inverted value: " . $obj->toString() . "\n";

// conjugate a complex number

// result: "Conjugated value: 3-2i"

$obj = Math_ComplexOp::conjugate($complex1);

echo "Conjugated value: " . $obj->toString() . "\n";

// multiply a complex number and its conjugate

// product is always a real number (imaginary part = 0)

// result: "Multiplied value: 17 + 0i"

$obj = Math_ComplexOp::mult($complex2, Math_ComplexOp::

conjugate($complex2));

echo "Multiplied value: " . $obj->toString();

?>

The add(), sub(), mult(), and div() methods take care of complex number
addition, subtraction, multiplication, and division respectively. The inverse()
method returns the inverse of the number, while the conjugate() method returns its
conjugate. The return value of all these methods is a new Math_Complex object; the
actual value of this object can be retrieved using the toString() method.

This page intentionally left blank

73

CHAPTER

3
Working with Dates

 and Times
IN THIS CHAPTER:
3.1 Getting the Current Date and Time
3.2 Formatting Timestamps
3.3 Checking Date Validity
3.4 Converting Strings to Timestamps
3.5 Checking for Leap Years
3.6 Finding the Number of Days in a Month
3.7 Finding the Day-in-Year or Week-in-Year

Number for a Date
3.8 Finding the Number of Days

or Weeks in a Year
3.9 Finding the Day Name for a Date

3.10 Finding the Year Quarter for a Date
3.11 Converting Local Time to GMT
3.12 Converting Between Different Time Zones
3.13 Converting Minutes to Hours
3.14 Converting Between PHP

and MySQL Date Formats
3.15 Comparing Dates
3.16 Performing Date Arithmetic
3.17 Displaying a Monthly Calendar
3.18 Working with Extreme Date Values

 7 4 P H P P r o g r a m m i n g S o l u t i o n s

Like most programming languages, PHP comes with a fairly full-featured
set of functions for date and time manipulation. Two of these functions are
probably familiar to you from your daily work as a developer— the date()

function for formatting dates and times and the mktime() function for generating
timestamps. But it’s unlikely that you’ve had as much contact with the other
members of the collection—the strtotime() function, the gmdate() function, or
the microtime() function.

These functions, together with many more, make it easy to solve some fairly
vexing date/time manipulation problems. Over the course of this chapter, I’ll show
you how to solve such problems, with listings for converting between time zones;
checking the validity of a date; calculating the number of days in a month or year;
displaying a monthly calendar; performing date arithmetic; and working with date
values outside PHP’s limits.

NOTE

PHP’s date and time functions were rewritten in PHP 5.1, with the result that every date or time
function expects the default time zone to be set (and generates a notice if this is not the case). The
listings in this chapter assume that this default time zone has previously been set, either via the
$TZ environment variable or the date.timezone setting in the php.ini configuration
file. In the rare cases when it is necessary to over-ride the system-wide time zone setting, PHP
offers the date_default_timezone_set() function, which can be invoked to set
the time zone on a per-script basis, as may be seen in the listing in “3.12: Converting Between
Different Time Zones.”

3.1 Getting the Current Date and Time

Problem
You want to display the current date and/or time.

Solution
Use PHP’s getdate() function:

<?php

// get current date and time

$now = getdate();

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 7 5

// turn it into strings

$currentTime = $now["hours"] . ":" . $now["minutes"] .↵
":" . $now["seconds"];

$currentDate = $now["mday"] . "." . $now["mon"] . "." . $now["year"];

// result: "It is now 12:37:47 on 30.10.2006" (example)

echo "It is now $currentTime on $currentDate";

?>

Comments
PHP’s getdate() function returns an array of values representing different
components of the current date and time. Here’s an example of what the array might
look like:

Array

(

 [seconds] => 34

 [minutes] => 14

 [hours] => 9

 [mday] => 23

 [wday] => 2

 [mon] => 5

 [year] => 2006

 [yday] => 137

 [weekday] => Monday

 [month] => February

 [0] => 1107752144

)

As the previous listing illustrates, it’s easy enough to use this array to generate a
human-readable date and time value. However, formatting options with getdate()
are limited, so if you need to customize your date/time display extensively, look at
the listing in “3.2: Formatting Timestamps” for an alternative way of accomplishing
the same thing.

NOTE

Notice that the 0 th element of the array returned by getdate() contains a UNIX timestamp
representation of the date returned—the same one that mktime() would generate.

 7 6 P H P P r o g r a m m i n g S o l u t i o n s

3.2 Formatting Timestamps

Problem
You want to turn a UNIX timestamp into a human-readable string.

Solution
Use PHP’s date() function to alter the appearance of the timestamp with various
formatting codes:

<?php

// get date

// result: "30 Oct 2006" (example)

echo date("d M Y", mktime()) . " \n";

// get time

// result: "12:38:26 PM" (example)

echo date("h:i:s A", mktime()) . " \n";

// get date and time

// result: "Monday, 30 October 2006, 12:38:26 PM" (example)

echo date ("l, d F Y, h:i:s A", mktime()) . " \n";

// get time with timezone

// result: "12:38:26 PM UTC"

echo date ("h:i:s A T", mktime()) . " \n";

// get date and time in ISO8601 format

// result: "2006-10-30T12:38:26+00:00"

echo date ("c", mktime());

?>

Comments
PHP’s date() function is great for massaging UNIX timestamps into different
formats. It accepts two arguments—a format string and a timestamp—and uses the
format string to turn the timestamp into a human-readable value. Each character
in the format string has a special meaning, and you can review the complete list at
http://www.php.net/date.

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 7 7

The date() function is usually found in combination with the mktime() function,
which produces a UNIX timestamp for a particular instant in time. This timestamp is
represented as the number of seconds since January 1 1970 00:00:00 Greenwich Mean
Time (GMT). Called without any arguments, mktime() returns a timestamp for the
current instant in time; called with arguments, it returns a timestamp for the instant
represented by its input. The following snippets illustrate this:

<?php

// get current timestamp

// result: 1162218979 (example)

echo mktime() . " \n";

// get timestamp for 01:00 AM 31 Jan 2007

// result: 1170205200

echo mktime(1,0,0,1,31,2007);

?>

NOTE

An alternative to the mktime() function is the time() function, which returns a UNIX
timestamp for the current instant in time. Unlike mktime(), however, time() cannot be
used to produce timestamps for arbitrary date values.

3.3 Checking Date Validity

Problem
You want to check if a particular date is valid.

Solution
Use PHP’s checkdate() function:

<?php

// check date 31-Apr-2006

// result: "Invalid date"

echo checkdate(31,4,2006) ? "Valid date" : "Invalid date";

?>

 7 8 P H P P r o g r a m m i n g S o l u t i o n s

Comments
Applications that accept date input from a user must validate this input before using
it for calculations or date operations. The checkdate() function simplifies this
task considerably. It accepts a series of three arguments, representing day, month
and year, and returns a Boolean value indicating whether the combination make up
a legal date.

An alternative way of accomplishing the same thing can be found in the PEAR
Calendar class, available from http://pear.php.net/package/Calendar.
This class offers an isValid() method to test the validity of a particular date value.
The following listing illustrates this:

<?php

// include Calendar class

include "Calendar/Day.php";

// initialize Day object to 31-Apr-2006

$day = & new Calendar_Day(2006, 4, 31);

// check date

// result: "Invalid date"

echo $day->isValid() ? "Valid date" : "Invalid date";

?>

3.4 Converting Strings to Timestamps

Problem
You want to convert a string, encapsulating a date or time value, into the
corresponding UNIX timestamp.

Solution
Use PHP’s strtotime() function:

<?php

// define string

$str = "20030607";

// convert string to timestamp

$ts = strtotime($str);

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 7 9

// format as readable date/time value

// result: "Saturday, 07 June 2003 12:00:00 AM" (example)

echo ($ts === -1) ? "Invalid string" : date("l, d F Y h:i:s A", $ts);

?>

Comments
PHP’s strtotime() function performs the very important function of converting
a human-readable date value into a UNIX timestamp, with minimal calculation
required on the part of the application. The date value can be any English-
language date descriptor; strtotime() will attempt to identify it and return the
corresponding timestamp. If strtotime() cannot convert the description to a
timestamp, it will return –1.

In addition to date strings, the strtotime() function also accepts English-
language time descriptors like “now,” “next Wednesday,” or “last Friday,” and you
can use it to perform rudimentary date arithmetic. The following listing illustrates
this:

<?php

// assume now is "Monday, 30 October 2006 02:56:34 PM"

// define string

$str = "next Friday";

// convert string to timestamp

$ts = strtotime($str);

// format as readable date/time value

// result: "Friday, 03 November 2006 12:00:00 AM"

echo ($ts === false) ? "Invalid string" : date("l, d F Y h:i:s A", $ts);

// define string

$str = "2 weeks 6 hours ago";

// convert string to timestamp

$ts = strtotime($str);

// format as readable date/time value

// result: "Monday, 16 October 2006 08:56:34 AM"

echo ($ts === false) ? "Invalid string" : date("l, d F Y h:i:s A", $ts);

?>

 8 0 P H P P r o g r a m m i n g S o l u t i o n s

TIP

For more sophisticated date arithmetic, take a look at the listing in “3.16: Performing Date
Arithmetic.” Read more strtotime() examples in the PHP manual at http://www
.php.net/strtotime.

3.5 Checking for Leap Years

Problem
You want to check if a particular year is a leap year.

Solution
Write a function to see if the year number is divisible by 4 or 400, but not 100:

<?php

// function to test if leap year

function testLeapYear($year) {

 $ret = (($year%400 == 0) || ($year%4 == 0 && $year%100 != 0)) ↵
? true : false;

 return $ret;

}

// result: "Is a leap year"

echo testLeapYear(2004) ? "Is a leap year" : "Is not a leap year";

// result: "Is not a leap year"

echo testLeapYear(2001) ? "Is a leap year" : "Is not a leap year";

?>

Comments
A year is a leap year if it is fully divisible by 400, or by 4 but not 100. The function
testLeapYear() in the previous listing encapsulates this logic, using PHP’s %
operator to check for divisibility, and returns a Boolean value indicating the result.

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 8 1

An alternative way to do this is to use the checkdate() function to test for the
presence of an extra day in February of that year. The following listing illustrates
this:

<?php

// function to test if leap year

function testLeapYear($year) {

 return checkdate(2, 29, $year);

}

// result: "Is a leap year"

echo testLeapYear(2004) ? "Is a leap year" : "Is not a leap year";

// result: "Is not a leap year"

echo testLeapYear(2001) ? "Is a leap year" : "Is not a leap year";↵
?>

3.6 Finding the Number of Days in a Month

Problem
You want to find the number of days in a particular month.

Solution
Use PHP’s date() function with the “t” modifier:

<?php

// get timestamp for month and year Mar 2005

$ts = mktime(0,0,0,3,1,2005);

// find number of days in month

// result: 31

echo date("t", $ts);

?>

 8 2 P H P P r o g r a m m i n g S o l u t i o n s

Comments
Given a UNIX timestamp, the date() function’s "t" modifier returns the number
of days in the corresponding month. The return value will range from 28 to 31.

An alternative way of accomplishing the same thing is to use the PEAR Date
class, available at http://pear.php.net/package/Date. Here, a Date()
object is first initialized to a specific day, month, and year combination, and then the
class’ getDaysInMonth() method is used to retrieve the number of days in that
month. The next listing illustrates this:

<?php

// include Date class

include "Date.php";

// initialize Date object to 1-Mar-2005

$dt = new Date();

$dt->setYear(2005);

$dt->setMonth(3);

$dt->setDay(1);

// get number of days in month

// result: 31

echo $dt->getDaysInMonth();

?>

3.7 Finding the Day-in-Year or Week-in-Year
Number for a Date

Problem
You want to find the day-in-year or week-in-year number for a particular date.

Solution
Use PHP’s date() function with the "z" or "W" modifier:

<?php

// get day of year for 01-Mar-2008

// result: 61

echo date("z", mktime(0,0,0,3,1,2008))+1;

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 8 3

// get week of year for 01-Mar-2008

// result: 09

echo date("W", mktime(0,0,0,3,1,2008));

?>

Comments
Given a UNIX timestamp, the date() function’s "z" modifier returns the day
number in the year, while the "W" modifier returns the week number. Note that
day numbers are indexed from 0, so it is necessary to add 1 to the final result to
obtain the actual day number in the year. Also look at the listing in “3.8: Finding the
Number of Days or Weeks in a Year” for another application of this technique.

Alternatively, you can use PEAR’s Date class, available from http://pear
.php.net/package/Date, to obtain the week number. Here, a Date() object is
first initialized to a specific day, month, and year combination, and then the class’
getWeekOfYear() method is used to retrieve the week number for that date.

<?php

// include Date class

include "Date.php";

// initialize Date object to 1-Mar-2008

$dt = new Date();

$dt->setYear(2008);

$dt->setMonth(3);

$dt->setDay(1);

// get week number in year

// result: 9

echo $dt->getWeekOfYear();

?>

3.8 Finding the Number of Days
or Weeks in a Year

Problem
You want to find the number of days or weeks in a particular year.

 8 4 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PHP’s date() function with the "z" or "W" modifiers:

<?php

// get total number of days in the year 2001

$numDays = date("z", mktime(0,0,0,12,31,2001))+1;

// get total number of weeks in the year 2001

$numWeeks = date("W", mktime(0,0,0,12,28,2001));

// result: "There are 365 days and 52 weeks in 2001."

echo "There are $numDays days and $numWeeks weeks in 2001.\n";

?>

Comments
Given a UNIX timestamp, the date() function’s "z" modifier returns the day
number in the year, while the "W" modifier returns the week number. By passing
a timestamp representation of the last day or last week of the year, it’s possible to
quickly find the total number of days or weeks in the year. Also look at the listing
in “3.7: Finding the Day-in-Year or Week-in-Year Number for a Date” for another
application of this technique.

Note that the value returned by the "z" modifier is indexed from 0, so it is
necessary to add 1 to the final result to obtain the actual number of days in the year.

3.9 Finding the Day Name for a Date

Problem
You want to find which day of the week a particular date falls on.

Solution
Use PHP’s date() function with the "l" modifier:

<?php

// get timestamp for date 04-Jun-2008

$ts = mktime(0,0,0,6,4,2008);

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 8 5

// get day of week

// result: "Wednesday"

echo date("l", $ts);

?>

Comments
Given a timestamp representing a particular date, the date() function’s "l"
modifier returns the weekday name corresponding to that date. If you need a numeric
value (0 = Sunday, 1 = Monday, …) rather than a string, use the "w" modifier
instead.

3.10 Finding the Year Quarter for a Date

Problem
You want to find which quarter of the year a particular date falls in.

Solution
Use PHP’s date() function with the "m" modifier:

<?php

// get timestamp for date 04-Jun-2008

$ts = mktime(0,0,0,6,4,2008);

// get quarter

// result: 2

echo ceil(date("m", $ts)/3);

?>

Comments
Given a timestamp representing a particular date, the date() function’s 'm'
modifier returns the month number (range 1–12) corresponding to that date. To
obtain the corresponding year quarter, divide the month number by 3 and round it up
to the nearest integer with the ceil() function.

An alternative way of accomplishing the same thing is to use the PEAR Date
class, available from http://pear.php.net/package/Date. Here, a Date()
object is first initialized to a specific day, month, and year combination, and then the

 8 6 P H P P r o g r a m m i n g S o l u t i o n s

class’ getQuarterOfYear() method is used to retrieve the year quarter for that
month. The next listing illustrates this:

<?php

// include Date class

include "Date.php";

// initialize Date object

$dt = new Date();

$dt->setYear(2008);

$dt->setMonth(6);

$dt->setDay(6);

// get quarter

// result: 2

echo $dt->getQuarterOfYear();

?>

3.11 Converting Local Time to GMT

Problem
You want to convert local time to Greenwich Mean Time (GMT).

Solution
Use PHP’s gmdate() function:

<?php

// convert current local time (IST) to GMT

// result: "15:06:25 30-Oct-06 GMT" (example)

echo gmdate("H:i:s d-M-y T") . "\n";

// convert specified local time (IST) to GMT

// result: "23:00:00 01-Feb-05 GMT" (example)

$ts = mktime(4,30,0,2,2,2005);

echo gmdate("H:i:s d-M-y T", $ts);

?>

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 8 7

Comments
The gmdate() function formats and displays a timestamp in GMT. Like the date()
function, it accepts a format string that can be used to control the final appearance
of the date and time value. Conversion to GMT is performed automatically based on
the time zone information returned by the operating system.

An alternative way of finding GMT time is to find the local time zone offset
from GMT, and subtract that from the local time. This offset can be found by using
the date() function’s "Z" modifier, which returns, in seconds, the time difference
between the current location and Greenwich. A negative sign attached to the offset
indicates that the location is west of Greenwich.

The next listing illustrates this:

<?php

// convert current local time (IST) to GMT

// result: "15:07:56 30-Oct-06 GMT" (example)

echo date("H:i:s d-M-y", time()-date("Z")) . " GMT \n";

// convert specified local time (IST) to GMT

// result: "23:00:00 01-Feb-05 GMT"

$ts = mktime(4,30,0,2,2,2005);

echo date("H:i:s d-M-y", $ts-date("Z", $ts)) . " GMT";

?>

3.12 Converting Between Different Time Zones

Problem
You want to obtain the local time in another time zone, given its GMT offset.

Solution
Write a PHP function to calculate the time in the specified zone:

<?php

// function to get time

// for another time zone

// given a specific timestamp and hour offset from GMT

 8 8 P H P P r o g r a m m i n g S o l u t i o n s

function getLocalTime($ts, $offset) {

 // performs conversion

 // returns UNIX timestamp

 return ($ts - date("Z", $ts)) + (3600 * $offset);

}

// get current local time in Singapore

// result: "00:11:26 31-10-06 SST"

echo date("H:i:s d-m-y", getLocalTime(mktime(), 8)) . " SST \n";

// get current local time in India

// result: "21:41:26 30-10-06 IST"

echo date("H:i:s d-m-y", getLocalTime(mktime(), +5.5)) . " IST \n";

// get current local time in USA (Eastern)

// result: "11:11:26 30-10-06 EST"

echo date("H:i:s d-m-y", getLocalTime(mktime(), -5)) . " EST \n";

// get current local time in USA (Pacific)

// result: "08:11:26 30-10-06 PST"

echo date("H:i:s d-m-y", getLocalTime(mktime(), -8)) . " PST \n";

// get time in GMT

// when it is 04:30 AM in India

// result: "23:00:00 01-02-05 GMT "

echo date("H:i:s d-m-y", getLocalTime(mktime(4,30,0,2,2,2005), 0)) .↵
" GMT \n";

?>

Comments
Assume here that you’re dealing with two time zones: Zone 1 and Zone 2. The
user-defined function getLocalTime() accepts two arguments: a UNIX timestamp
for Zone 1 and the time zone offset, in hours from GMT, for Zone 2. Because it’s
simpler to perform time zone calculations from GMT, the Zone 1 UNIX timestamp
is first converted to GMT (see the listing in “3.12: Converting Between Different
Time Zones” for more on this step) and then the stated hour offset is added to it
to obtain a new UNIX timestamp for Zone 2 time. This timestamp can then be
formatted for display with the date() function.

Note that given UNIX timestamps are represented in seconds, the hour offset
passed to getLocalTime() must be multiplied by 3600 (the number of seconds

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 8 9

in 1 hour) before the offset calculation can be performed. Note also that if the hour
offset passed to getLocalTime() is 0, GMT time will be returned.

If this is too complicated for you, you can also perform time zone conversions
with the PEAR Date class, available from http://pear.php.net/package/
Date. Here, a Date() object is initialized and its current time zone is set with the
setTZ() method. The corresponding time in any other region of the world can then
be obtained by invoking the convertTZ() method with the name of the region.
Take a look:

<?php

// include Date class

include "Date.php";

// initialize Date object

$d = new Date("2005-02-01 16:29:00");

// set time zone

$d->setTZ('Asia/Calcutta');

// convert to UTC

// result: "2005-02-01 10:59:00"

$d->toUTC();

echo $d->getDate() . " \n";

// convert to American time (EST)

// result: "2005-02-01 05:59:00"

$d->convertTZ(new Date_TimeZone('EST'));

echo $d->getDate() . " \n";

// convert to Singapore time

// result: "2005-02-01 18:59:00"

$d->convertTZ(new Date_TimeZone('Asia/Singapore'));

echo $d->getDate() . " \n";

?>

A complete list of valid region names for time zone conversion can be obtained
from the package documentation.

 9 0 P H P P r o g r a m m i n g S o l u t i o n s

TIP

There’s also a third “shortcut” solution to this problem: simply use the date_default_
timezone_set() function to set the default time zone to the target city or time zone, and
use the date() function to return the local time in that zone. Here’s an example:

<?php

// set default time zone to destination

// result: "00:11:26 31-10-06 SST"

date_default_timezone_set('Asia/Singapore');

echo date("H:i:s d-m-y") . " SST \n";

// set default time zone to destination

// result: "08:11:26 30-10-06 PST"

date_default_timezone_set('US/Pacific');

echo date("H:i:s d-m-y") . " PST \n";

?>

3.13 Converting Minutes to Hours

Problem
You want to convert between mm and hh:mm formats.

Solution
Divide or multiply by 60 and add the remainder:

<?php

// define number of minutes

$mm = 156;

// convert to hh:mm format

// result: "02h 36m"

echo sprintf("%02dh %02dm", floor($mm/60), $mm%60);

?>

<?php

// define hours and minutes

$hhmm = "02:36";

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 9 1

// convert to minutes

// result: "156 minutes"

$arr = explode(":", $hhmm);

echo $arr[0]*60 + $arr[1] . " minutes";

?>

Comments
Which is more easily understood: “105 minutes” or “1 hour, 45 minutes”? The
previous listing takes care of performing this conversion between formats.

Given the total number of minutes, the number of hours can be obtained by
dividing by 60, with the remainder representing the number of minutes. The
sprintf() function takes care of sticking the two pieces together.

Given a string in hh:mm format, the explode() function splits it on the colon (:)
separator, converts the first element from hours to minutes by multiplying it by 60,
and then adds the second element to get the total number of minutes.

3.14 Converting Between PHP
and MySQL Date Formats

Problem
You want to convert a MySQL DATETIME/TIMESTAMP value to a UNIX timestamp
suitable for use with PHP’s date() function, or vice versa.

Solution
To convert a MySQL TIMESTAMP/DATETIME type to a UNIX timestamp, use PHP’s
strtotime() function or MySQL’s UNIX_TIMESTAMP() function:

<?php

// run database query, retrieve MySQL timestamp

$connection = mysql_connect("localhost", "user", "pass") ↵
or die ("Unable to connect!");

$query = "SELECT NOW() AS tsField";

$result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

$row = mysql_fetch_object($result);

mysql_close($connection);

 9 2 P H P P r o g r a m m i n g S o l u t i o n s

// convert MySQL TIMESTAMP/DATETIME field

// to UNIX timestamp with PHP strtotime() function

// format for display with date()

echo date("d M Y H:i:s", strtotime($row->tsField));

?>

<?php

// run database query, retrieve MySQL timestamp

// convert to UNIX timestamp using MySQL UNIX_TIMESTAMP() function

$connection = mysql_connect("localhost", "user", "pass") ↵
or die ("Unable to connect!");

$query = "SELECT UNIX_TIMESTAMP(NOW()) as tsField";

$result = mysql_query($query) or die ("Error in query: $query. " .

mysql_error());

$row = mysql_fetch_object($result);

mysql_close($connection);

// timestamp is already in UNIX format

// so format for display with date()

echo date("d M Y H:i:s", $row->tsField);

?>

To convert a UNIX timestamp to MySQL’s TIMESTAMP/DATETIME format,
use the date() function with a custom format strong, or use MySQL’s FROM_
UNIXTIME() function:

<?php

// create UNIX timestamp with mktime()

$ts = mktime(22,4,32,7,2,2007);

// turn UNIX timestamp into MYSQL TIMESTAMP/DATETIME format (string)

// result: "2007-07-02 22:04:32"

echo date("Y-m-d H:i:s", $ts);

// turn UNIX timestamp into MYSQL TIMESTAMP/DATETIME format (numeric)

// result: 20070702220432

echo date("YmdHis", $ts);

?>

<?php

// create UNIX timestamp with PHP mktime() function

$ts = mktime(22,4,32,7,2,2007);

// turn UNIX timestamp into MYSQL TIMESTAMP/DATETIME format

// using MySQL's FROM_UNIXTIME() function

$connection = mysql_connect("localhost", "user", "pass") ↵
or die ("Unable to connect!");

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 9 3

$query = "SELECT FROM_UNIXTIME('$ts') AS tsField";

$result = mysql_query($query) or die ("Error in query: $query. " . ↵
mysql_error());

$row = mysql_fetch_object($result);

mysql_close($connection);

// result: "2007-07-02 22:04:32"

echo $row->tsField;

?>

Comments
A common grouse of PHP/MySQL developers is the incompatibility between the
date formats used by the two applications. Most of PHP’s date/time functions use a
UNIX timestamp; MySQL’s DATETIME and TIMESTAMP fields only accept values
in either YYYYMMDDHHMMSS or "YYYY-MM-DD HH:MM:SS" format. PHP’s date()
function will not correctly read a native DATETIME or TIMESTAMP value, and
MySQL will simply zero out native UNIX timestamps. Consequently, converting
between the two formats is a fairly important task for a PHP/MySQL developer.

Fortunately, there are a couple of ways to go about this, depending on whether
you’d prefer to do the conversion at the PHP application layer or the MySQL
database layer.

� At the PHP layer, you can convert a MySQL DATETIME or TIMESTAMP value
into a UNIX timestamp by passing it to the PHP strtotime() function,
which is designed specifi cally to parse and attempt to convert English-readable
date values into UNIX timestamps (see the listing in “3.4: Converting Strings
to Timestamps”). Going the other way, you can insert a UNIX timestamp into
a MySQL DATETIME or TIMESTAMP fi eld by fi rst formatting it with the PHP
date() function.

� At the MySQL layer, you can convert a MySQL DATETIME or TIMESTAMP
value into a UNIX timestamp with the MySQL UNIX_TIMESTAMP() function.
Or, you can save a UNIX timestamp directly to a MySQL DATETIME or
TIMESTAMP fi eld by using MySQL’s built-in FROM_UNIXTIME() function to
convert the timestamp into MySQL-compliant format.

3.15 Comparing Dates

Problem
You want to compare two dates to see which is more recent.

 9 4 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PHP’s comparison operators to compare the timestamps corresponding to the
two dates:

<?php

// create timestamps for two dates

$date1 = mktime(0,0,0,2,1,2007);

$date2 = mktime(1,0,0,2,1,2007);

// compare timestamps

// to see which represents an earlier date

if ($date1 > $date2) {

 $str = date ("d-M-Y H:i:s", $date2) . " comes before " .↵
date ("d-M-Y H:i:s", $date1);

} else if ($date2 > $date1) {

 $str = date ("d-M-Y H:i:s", $date1) . " comes before " .↵
date ("d-M-Y H:i:s", $date2);

} else {

 $str = "Dates are equal";

}

// result: "01-Feb-2007 00:00:00 comes before 01-Feb-2007 01:00:00"

echo $str;

?>

Comments
PHP’s comparison operators work just as well on temporal values as they do on
numbers and strings. This is illustrated in the previous listing, which compares two
dates to see which one precedes the other.

An alternative is the PEAR Date class, available from http://pear.php
.net/package/Date. Comparing dates with this class is fairly simple: initialize
two Date() objects, and then call the compare() method to see which one comes
first. The compare() method returns 0 if both dates are equal, –1 if the first date is
before the second, and 1 if the second date is before the first. Here’s an illustration:

<?php

// include Date class

include "Date.php";

// initialize two Date objects

$date1 = new Date("2007-02-01 00:00:00");

$date2 = new Date("2007-02-01 01:00:00");

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 9 5

// compare dates

// returns 0 if the dates are equal

// -1 if $date1 is before $date2

// 1 if $date1 is after $date2

// result: -1

echo Date::compare($date1, $date2);

?>

You could also use either one of the Date() objects’ before() and after()
methods on the other. The next listing illustrates this:

<?php

// include Date class

include "Date.php";

// initialize two Date objects

$date1 = new Date("2007-02-01 00:00:00");

$date2 = new Date("2006-02-01 00:00:00");

// check if $date1 is before $date2

// result: "false"

echo $date1->before($date2) ? "true" : "false";

// check if $date2 is before $date1

// result: "true"

echo $date1->after($date2) ? "true" : "false";

?>

TIP

You can compare a date relative to “today” with the isPast() and isFuture()
methods. Look in the package documentation for examples.

3.16 Performing Date Arithmetic

Problem
You want to add (subtract) time intervals to (from) a date.

 9 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Convert the date to a UNIX timestamp, express the time interval in seconds, and add
(subtract) the interval to (from) the timestamp:

<?php

// set base date

$dateStr = "2008-09-01 00:00:00";

// convert base date to UNIX timestamp

// expressed in seconds

$timestamp = strtotime($dateStr);

// express "28 days, 5 hours, 25 minutes and 11 seconds"

// in seconds

$intSecs = 11 + (25*60) + (5*60*60) + (28*24*60*60);

// add interval (in seconds)

// to timestamp (in seconds)

// format result for display

// returns "2008-09-29 05:25:11"

$newDateStr = date("Y-m-d h:i:s", $timestamp + $intSecs);

echo $newDateStr;

?>

Comments
When you’re dealing with temporal data, one of the more common (and complex)
tasks involves performing addition and subtraction operations on date and time
values. Consider, for example, the simple task of calculating a date 91 days hence.
Usually, in order to do this with any degree of precision, you need to factor in a
number of different variables: the month you’re in, the number of days in that
month, the number of days in the months following, whether or not the current year
is a leap year, and so on.

PHP doesn’t provide built-in functions for this type of arithmetic, but it’s
nevertheless fairly easy to do. The previous listing illustrates one approach to
the problem, wherein the time interval is converted to seconds and added to (or
subtracted from) the base timestamp, also expressed in seconds.

Another option is to use PEAR’s Date class, available from http://pear
.php.net/package/Date. This class comes with two methods to perform date
and time arithmetic: addSpan() and subtractSpan(). The “span” in both cases
is a DateSpan() object, created from a delimited string containing day, hour,
minute, and second intervals. This span is added to (or subtracted from) a previously

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 9 7

initialized Date() object, and a new date and time is calculated and returned as
another Date() object. Here’s an example:

<?php

// include Date class

include "Date.php";

// initialize Date object

$d = new Date("2007-02-01 00:00:00");

// add 28 days, 5 hours, 25 minutes and 11 seconds

// result: "2007-03-01 05:25:11"

$d->addSpan(new Date_Span("28:05:25:11"));

echo $d->getDate() . " \n";

// now subtract 1 day, 30 minutes

// result: "2007-02-28 04:55:11"

$d->subtractSpan(new Date_Span("01:00:30:00"));

echo $d->getDate();

?>

3.17 Displaying a Monthly Calendar

Problem
You want to print a calendar for a particular month.

Solution
Use PEAR’s Calendar class:

<?php

// include Calendar class

include "Calendar/Month/Weekdays.php";

include "Calendar/Day.php";

// initialize calendar object

$month = new Calendar_Month_Weekdays(2008, 1);

// build child objects (days of the month)

$month->build();

 9 8 P H P P r o g r a m m i n g S o l u t i o n s

// format as table

echo "<pre>";

// print month and year on first line

echo " " . sprintf("%02d", $month->thisMonth()) . "/" .↵
$month->thisYear() . "\n";

// print day names on second line

echo " M T W T F S S\n";

// iterate over day collection

while ($day = $month->fetch()) {

 if ($day->isEmpty()) {

 echo " ";

 } else {

 echo sprintf("%3d", $day->thisDay()) . " ";

 }

 if ($day->isLast()) {

 echo "\n";

 }

}

echo "</pre>";

?>

Comments
Displaying a dynamic calendar on a Web page might seem trivial, but if you’ve ever
tried coding it firsthand, you’ll know the reality is somewhat different. Better than
working your way through the numerous calculations and adjustments, then, is using
the PEAR Calendar class, available from http://pear.php.net/package/
Calendar. This class is designed specifically to generate a monthly or yearly
calendar that you can massage into whatever format you desire.

The Calendar package includes a number of different classes, each for a specific
purpose. The previous listing uses the Calendar_Month_Weekdays() class, which
provides the methods needed to generate a monthly calendar sorted into weeks. (This
is the same type you probably have hanging on your wall.) The class is initialized
with a month and year, and its build() method is invoked to build the calendar
data structure. A while() loop is then used in combination with the fetch()
method to iterate over the Calendar data structure and print each day. Four utility
method—isFirst(), isLast(), isEmpty() and isSelected()—enable you
to customize the appearance of particular dates in the month.

Figure 3-1 illustrates the output of the listing above.

 C h a p t e r 3 : W o r k i n g w i t h D a t e s a n d T i m e s 9 9

The Calendar package is fairly sophisticated, and enables a developer to create
and customize a variety of different calendar types. There isn’t enough space here
to discuss it in detail, so you should take a look at the examples provided with the
package to understand what you can do with it.

3.18 Working with Extreme Date Values

Problem
You want to work with dates outside the range 01-01-1970 to 19-01-2038.

Solution
Use the ADOdb Date Library:

<?php

// include ADODB date library

include "adodb-time.inc.php";

Figure 3-1 A calendar generated with the PEAR Calendar class

 1 0 0 P H P P r o g r a m m i n g S o l u t i o n s

// get date representation for 01-Mar-1890

// returns "01-Mar-1890"

echo adodb_date("d-M-Y", adodb_mktime(4,31,56,3,1,1890)) . " \n";

// get date representation for 11-Jul-3690 10:31 AM

// result: "11-Jul-3690 10:31:09 AM"

echo adodb_gmdate("d-M-Y h:i:s A", adodb_mktime(16,1,9,07,11,3690)) . "

\n";

// get date representation for 11-Jul-3690 04:01 PM

// result: "11-Jul-3690 04:01:09 PM"

echo adodb_gmdate("d-M-Y h:i:s A", adodb_gmmktime(16,1,9,07,11,3690));

?>

Comments
Because PHP uses 32-bit signed integers to represent timestamps, the valid range
of a PHP timestamp is usually 1901–2038 on UNIX, and 1970–2038 on Windows.
None of the built-in PHP date functions will work with dates outside this range.
Needless to say, this is a Bad Thing.

You can work around this problem with the Active Data Objects Data Base
(ADOdb) Date Library, a free PHP library that uses 64-bit floating-point numbers
instead of 32-bit integers to represent timestamps, thus significantly increasing
the valid range. This library is freely available from http://phplens.com/
phpeverywhere/adodb_date_library, and it provides 64-bit substitutes for
PHP’s native date and time functions, enabling you to work with dates from “100
A.D. to 3000 A.D. and later.”

As the previous listing illustrates, input and output parameters for the ADOdb
functions are identical to those of the native PHP ones, enabling them to serve as
drop-in replacements.

101

CHAPTER

4
Working with Arrays

IN THIS CHAPTER:
 4.1 Printing Arrays
 4.2 Processing Arrays
 4.3 Processing Nested Arrays
 4.4 Counting the Number of Elements in an Array
 4.5 Converting Strings to Arrays
 4.6 Swapping Array Keys and Values
 4.7 Adding and Removing Array Elements
 4.8 Extracting Contiguous Segments of an Array
 4.9 Removing Duplicate Array Elements
4.10 Re-indexing Arrays
4.11 Randomizing Arrays

4.12 Reversing Arrays
4.13 Searching Arrays
4.14 Searching Nested Arrays
4.15 Filtering Array Elements
4.16 Sorting Arrays
4.17 Sorting Multidimensional Arrays
4.18 Sorting Arrays Using a Custom Sort Function
4.19 Sorting Nested Arrays
4.20 Merging Arrays
4.21 Comparing Arrays

 1 0 2 P H P P r o g r a m m i n g S o l u t i o n s

PHP’s array manipulation API was redesigned in PHP 4.x to simplify
common array manipulation tasks. New objects designed specifically for
array iteration were introduced in PHP 5.x as part of the Standard PHP

Library (SPL) to make array manipulation even more extensible and customizable.
The result is a sophisticated toolkit that enables you to easily perform complex

tasks, including recursively traversing and searching a series of nested arrays, sorting
arrays by more than one key, filtering array elements by user-defined criteria, and
swapping array keys and values. In this chapter, I’ll discuss all of these tasks, and
many more … so keep reading!

4.1 Printing Arrays

Problem
You want to print the contents of an array.

Solution
Use PHP’s print_r() or var_dump() functions:

<?php

// define array

$data = array(

 "UK" => array(

 "longname" => "United Kingdom", "currency" => "GBP"),

 "US" => array(

 "longname" => "United States of America", "currency" => ↵
"USD"), "IN" => array(

 "longname" => "India", "currency" => "INR"));

// print array contents

print_r($data);

var_dump($data);

?>

Comments
The print_r() and var_dump() functions are great ways to X-ray the contents of
an array variable, and print a hierarchical listing of its internals. The previous listing

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 0 3

demonstrates them both in action. Note that var_dump() produces more verbose
output (including information on data types and lengths) than print_r().

4.2 Processing Arrays

Problem
You want to iteratively process the elements in an array.

Solution
Use a foreach() loop and appropriate temporary variables, depending on whether
the array has numeric indices or string keys:

<?php

// define indexed array

$idxArr = array("John", "Joe", "Harry", "Sally", "Mona");

// process and print array elements one by one

// result: "John | Joe | Harry | Sally | Mona | "

foreach ($idxArr as $i) {

 print "$i | ";

}

?>

<?php

// define associative array

$assocArr = array("UK" => "London", "US" => "Washington",↵
"FR" => "Paris", "IN" => "Delhi");

// process and print array elements one by one

// result: "UK: London US: Washington FR: Paris IN: Delhi "

foreach ($assocArr as $key=>$value) {

 print "$key: $value";

 print "
";

}

?>

Comments
PHP’s foreach() loop is the simplest way to iterate over an array. At each
iteration, the current array element is assigned to a temporary variable, which can

 1 0 4 P H P P r o g r a m m i n g S o l u t i o n s

then be used for further processing. For associative arrays, two temporary variables
may be used, one each for the key and value.

Alternatively, you may prefer to use the Iterators available as part of the SPL.
Iterators are ready-made, extensible constructs designed specifically to loop over
item collections—directories, files, class methods, and (naturally!) array elements.
To process an array, use an ArrayIterator, as illustrated here:

<?php

// define associative array

$assocArr = array("UK" => "London", "US" => "Washington",↵
"FR" => "Paris", "IN" => "Delhi");

// create an ArrayIterator object

$iterator = new ArrayIterator($assocArr);

// rewind to beginning of array

$iterator->rewind();

// process and print array elements one by one

// result: "UK: London US: Washington FR: Paris IN: Delhi "

while($iterator->valid()) {

 print $iterator->key() . ": " . $iterator->current() . "\n";

 $iterator->next();

}

?>

Here, an ArrayIterator object is initialized with an array variable, and the object’s
rewind() method is used to reset the internal array pointer to the first element of
the array. A while() loop, which runs so long as a valid() element exists, can
then be used to iterate over the array. Individual array keys are retrieved with the
key() method, and their corresponding values are retrieved with the current()
method. The next() method moves the internal array pointer forward to the next
array element.

You can read more about the ArrayIterator at http://www.php.net/~helly/
php/ext/spl/.

4.3 Processing Nested Arrays

Problem
You want to process all the elements in a series of nested arrays.

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 0 5

Solution
Write a recursive function to traverse the array:

<?php

// function to recursively traverse nested arrays

function arrayTraverse($arr) {

 // check if input is array

 if (!is_array($arr)) { die ("Argument is not array!"); }

 // iterate over array

 foreach($arr as $value) {

 // if a nested array

 // recursively traverse

 if (is_array($value)) {

 arrayTraverse($value);

 } else {

 // process the element

 print strtoupper($value) . " \n";

 }

 }

}

// define nested array

$data = array(

 "United States",

 array("Texas", "Philadelphia"),

 array("California",

 array ("Los Angeles", "San Francisco")));

// result: "UNITED STATES TEXAS PHILADELPHIA CALIFORNIA LOS ANGELES SAN

FRANCISCO"

arrayTraverse($data);

?>

Comments
It’s fairly easy to iterate over a single array, processing each and every element in
turn. Dealing with a series of nested arrays requires a little more effort. The previous
listing illustrates the standard technique, a recursive function that calls itself to travel
ever deeper into a layered array.

The inner workings of the arrayTraverse() function are fairly simple. Every
time the function encounters an array value, it checks to see if that value is an array
or a scalar. If it’s an array, the function calls itself and repeats the process until it

 1 0 6 P H P P r o g r a m m i n g S o l u t i o n s

reaches a scalar value. If it’s a scalar, the value is processed—the previous listing
calls strtoupper(), but you can obviously replace this with your own custom
routine—and then the entire performance is repeated for the next value.

You could also use an Iterator from the SPL. Iterators are ready-made, extensible
constructs designed specifically to loop over item collection—directories, files, class
methods, and array elements. A predefined RecursiveArrayIterator already exists and
it’s not difficult to use this for recursive array processing. Here’s how:

<?php

// define nested array

$data = array(

 "United States",

 array("Texas", "Philadelphia"),

 array("California",

 array ("Los Angeles", "San Francisco")));

// initialize an Iterator

// pass it the array to be processed

$iterator = new RecursiveIteratorIterator(new RecursiveArrayIterator ↵
($data));

// iterate over the array

// result: "UNITED STATES TEXAS PHILADELPHIA CALIFORNIA LOS ANGELES SAN

FRANCISCO"

foreach ($iterator as $value) {

 print strtoupper($value) . " \n";

}

?>

To recursively process an array, initialize a RecursiveIteratorIterator object (this is
an Iterator designed solely for the purpose of iterating over other recursive Iterators)
and pass it a newly minted RecursiveArrayIterator. You can now process all the
elements of the nested array(s) with a foreach() loop.

You can read more about the RecursiveArrayIterator, the RecursiveIteratorIterator, and
the RecursiveIterator interfaces at http://www.php.net/~helly/php/ext/spl/.

4.4 Counting the Number of Elements in an Array

Problem
You want to find out how many elements an array contains.

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 0 7

Solution
Use PHP’s count() function:

<?php

// define indexed array

$animals = array("turtle", "iguana", "wolf", "anteater", "donkey");

// get array size (number of elements)

// result: 5

echo count($animals);

?>

Comments
The count() function returns the number of elements in the array. An alternative is
to use the sizeof() function, which does the same thing.

4.5 Converting Strings to Arrays

Problem
You want to decompose a string into individual elements and store them in an array,
or combine the elements of an array into a single string.

Solution
Use PHP’s explode() function to split a string by delimiter and store the separate
segments in a numerically indexed array:

<?php

// define string

$alphabetStr = "a b c d e f g h i j k";

// break string into array

// using whitespace as the separator

// result: ("a","b","c","d","e","f","g","h","i","j","k")

print_r(explode(" ", $alphabetStr));

?>

 1 0 8 P H P P r o g r a m m i n g S o l u t i o n s

Use PHP’s implode() function to combine array elements into a single string,
with an optional delimiter as “glue”:

<?php

// define array

$names = array("John", "Joe", "Harry", "Sally", "Mona");

// combine array elements into string

// using "and" as the separator

// result: "John and Joe and Harry and Sally and Mona"

echo implode(" and ", $names);

?>

Comments
PHP’s explode() function makes it a single-step process to split a delimiter-
separated string list into an array of individual list elements. The previous listing
clearly illustrates this: the explode() function scans the string for the delimiter and
cuts out the pieces around it, placing them in an array. Once the list items have been
extracted, a foreach() loop is a good way to process the resulting array.

PHP’s implode() function does the reverse. It iterates over an array, joining the
elements into a single string. An optional delimiter, typically a comma (,) or colon (:),
can be used to separate the array elements from each other in the final string. The
previous listing illustrates this by using the word "and" to join the various array
elements into a readable sentence.

4.6 Swapping Array Keys and Values

Problem
You want to interchange the keys and values of an associative array.

Solution
Use PHP’s array_flip() function:

<?php

// define associative array

$opposites = array("white" => "black", "day" => "night", "open" =>

"close");

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 0 9

// exchange keys and values

// returns ("black" => "white", "night" => "day", "close" => "open")

print_r(array_flip($opposites));

?>

Comments
PHP’s array_flip() function performs a very specialized task. It reverses the
key-value relationship for all the elements of an associative array, returning a new
array that is the mirror image of the original. This function should not be confused
with the array_reverse() function, discussed in the listing in “4.12: Reversing
Arrays.”

4.7 Adding and Removing Array Elements

Problem
You want to add or remove elements from an array.

Solution
Use PHP’s array_pop(), array_push(), array_shift(), and array_
unshift() functions to attach or detach elements from the beginning or ends of a
numerically indexed array:

<?php

// define indexed array

$superheroes = array("spiderman", "superman");

// add an element to the end of the array

// result: ("spiderman", "superman", "the incredible hulk")

array_push($superheroes, "the incredible hulk");

print_r($superheroes);

// take an element off the beginning of the array

// result: ("superman", "the incredible hulk")

array_shift($superheroes);

print_r($superheroes);

 1 1 0 P H P P r o g r a m m i n g S o l u t i o n s

// add an element to the beginning of the array

// result: ("the human torch", "superman", "the incredible hulk")

array_unshift($superheroes, "the human torch");

print_r($superheroes);

// take an element off the end of the array

// result: ("the human torch", "superman")

array_pop($superheroes);

print_r($superheroes);

?>

Use PHP’s array_splice() function to add or remove elements from the
middle of an array:

<?php

// define array

$colors = array("violet", "indigo", "blue", "green", "yellow",↵
"orange", "red", "purple", "black", "white");

// remove middle 4 elements

// result: ("violet", "indigo", "blue", "purple", "black", "white")

array_splice($colors, 3, 4);

print_r($colors);

// add 2 elements between "black" and "white"

// result: ("violet", "indigo", "blue", "purple", "black",↵
"silver", "brown", "white")

array_splice($colors, 5, 0, array("silver", "brown"));

print_r($colors);

?>

Comments
PHP comes with four functions to add and remove elements from the ends of an
array. The array_unshift() function adds an element to the beginning of an
array, while the array_shift() function removes the first element of an array.
The array_push() and array_pop() functions work in a similar manner,
but operate on the end of an array instead. Note that the array is automatically
re-indexed after each operation.

TIP

You can add multiple elements with array_unshift() and array_push()—simply
specify them as additional arguments in the function call.

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 1 1

NOTE

It is not usually appropriate to use the array_unshift() and array_push()
functions with associative arrays. Elements added in this manner will have numeric, rather than
string, indices.

To add or remove elements from the middle of an array, use the array_
splice() function. This function packs a lot of power under an unassuming
exterior—it can be used to “splice in” new array elements, optionally replacing
existing elements in the process.

The array_splice() function accepts four arguments: the array to operate
on, the index to begin splicing at, the number of elements to return from the start
position, and an array of replacement values. Omitting the final argument causes
array_splice() to remove elements without replacing them; this comes in
handy for removing elements from the middle of an array. Note that the array is
automatically re-indexed after array_splice() has finished.

TIP

You can actually use array_splice() to perform all the functions of array_pop(),
array_push(), array_shift(), and array_unshift(). The PHP manual
page at http://www.php.net/array-splice has more information.

NOTE

The array_unshift(), array_shift(), array_pop(), and array_
push() functions only work with previously initialized arrays. You’ll get an error if you attempt
to use them on uninitialized array variables.

4.8 Extracting Contiguous Segments of an Array

Problem
You want to retrieve two or more successive elements from an array.

 1 1 2 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PHP’s array_slice() function:

<?php

// define array

$colors = array("violet", "indigo", "blue", "green", "yellow",↵
"orange", "red", "purple", "black", "white");

// extract middle 4 elements

// result: ("green", "yellow", "orange", "red");

$slice = array_slice($colors, 3, 4);

print_r($slice);

?>

Comments
PHP enables you to extract a subsection of an array with the array_slice()
function, in much the same way that the substr() function enables you to extract a
section of a string. The function takes three arguments: the array variable to operate
on, the index to begin slicing at, and the number of elements to return from the start
position.

It’s important to note that array_slice() is less intrusive than the array_
splice() function discussed in the listing in “4.7: Adding and Removing Array
Elements”—array_splice() alters the original array, while array_slice()
merely returns a subset, leaving the original array unchanged.

4.9 Removing Duplicate Array Elements

Problem
You want to strip an array of all duplicate elements to obtain a unique set.

Solution
Use PHP’s array_unique() function:

<?php

// define an array containing duplicates

$numbers = array(10,20,10,40,35,80,35,50,55,10,55,30,40,70,50,10,35,↵
85,40,90,30);

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 1 3

// extracts all unique elements into a new array

// result: "10, 20, 40, 35, 80, 50, 55, 30, 70, 85, 90"

echo join(", ", array_unique($numbers));

?>

Comments
The array_unique() function is an easy way to produce a list of the unique
elements of an array. This function finds all the unique elements of an array (either
associative or numerically indexed) and places them into a new array. The original
array remains unchanged.

To filter array elements by other criteria, take a look at the listing in “4.15:
Filtering Array Elements.”

4.10 Re-indexing Arrays

Problem
You want to re-index a numerically indexed array after removing elements from it,
to close up the “gaps” in the indexing sequence.

Solution
Use PHP’s array_values() function:

<?php

// define indexed array

$superheroes = array(0 => "spiderman", 1 => "superman",↵
2 => "captain marvel", 3 => "green lantern");

// remove an element from the middle of the array

// result: (0 => "spiderman", 1 => "superman", 3 => "green lantern")

unset ($superheroes[2]);

// rearrange array elements to remove gap

// result: (0 => "spiderman", 1 => "superman", 2 => "green lantern")

$superheroes = array_values($superheroes);

print_r($superheroes);

?>

 1 1 4 P H P P r o g r a m m i n g S o l u t i o n s

Comments
If you remove one or more elements from the middle of an integer-indexed array
with the unset() function, PHP doesn’t automatically re-index the array for you.
As a result, you end up with an array containing nonsequential index numbers.

It’s generally a good idea to close up these “holes” in the array indexing sequence,
to eliminate the possibility of them skewing your array calculations. The simplest
way to do this is to retrieve the list of array values with the array_values()
function, and then reassign this list back to the original array variable. This re-
indexes the array and closes up the gaps.

NOTE

Because associative arrays use string indices, you don’t need to re-index them in this manner after
unset()-ting their elements.

4.11 Randomizing Arrays

Problem
You want to shuffle an array randomly, or retrieve one or more random elements
from an array.

Solution
Use PHP’s shuffle() and array_rand() functions:

<?php

// define array of numbers from 1 to 5

$numbers = range(1,5);

// shuffle array elements randomly

// result: "3, 5, 1, 2, 4" (example)

shuffle($numbers);

echo join (", ", $numbers);

?>

<?php

// define array of numbers from 1 to 12

$numbers = range(1,12);

// pick 5 random keys from the array

$randKeys = array_rand($numbers, 5);

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 1 5

// print the chosen elements

// result: "3, 5, 1, 2, 4" (example)

echo join (", ", $randKeys);

?>

Comments
PHP’s shuffle() function randomly re-arranges the elements of the array
passed to it. Key-value associations are retained for associative arrays, but not for
numerically indexed arrays.

If you’d prefer to leave the array order untouched and just pull out some elements
at random instead, the array_rand() function is a better bet. This function
returns an array of randomly extracted keys, which you can then use to retrieve the
corresponding array values.

4.12 Reversing Arrays

Problem
You want to reverse the order of elements in an array.

Solution
Use PHP’s array_reverse() function:

<?php

// define array of numbers

$numbers = array("one", "two", "three", "four", "five");

// return an array with elements reversed

// result: ("five", "four", "three", "two", "one")

print_r(array_reverse($numbers));

?>

Comments
PHP’s array_reverse() function is pretty simple—give it an array and it returns
a new array containing the elements of the original array, but in reverse order. Key-
value association is retained for associative arrays, but numerically indexed arrays
are re-indexed.

 1 1 6 P H P P r o g r a m m i n g S o l u t i o n s

4.13 Searching Arrays

Problem
You want to search an array for a particular key or value.

Solution
Use PHP’s array_key_exists() or in_array() functions:

<?php

// define associative array

$data = array(

 "UK" => "United Kingdom",

 "US" => "United States of America",

 "IN" => "India",

 "AU" => "Australia");

// search for key

// result: "Key exists"

echo array_key_exists("UK", $data) ? "Key exists" : ↵
"Key does not exist";

// search for value

// result: "Value exists"

echo in_array("Australia", $data) ? "Value exists" : ↵
"Value does not exist";

?>

Comments
PHP comes with two functions that let you search both array keys and values: the
array_key_exists() function scans an array’s keys for matches to your search
term, while the in_array() function checks its values.

It should be noted, though, that the search capability here is fairly primitive; both
functions will return false unless they find an exact match for your search term.
If you need more sophisticated search capabilities—for example, support for regular
expression or partial matches—consider writing your own search function, as in the
script that follows:

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 1 7

<?php

// function to search array keys and values

function arraySearch($needle, $haystack) {

 // check if input is array

 if (!is_array($haystack)) { die ("Second argument is not array!"); }

 // iterate over array

 foreach ($haystack as $key=>$value) {

 // check keys and values for match

 // return true if match

 if (preg_match("/$needle/i", $value) || preg_match("/$needle/↵
i", $key)) { return true;

 break;

 }

 }

}

// define associative array

$data = array(

 "UK" => "United Kingdom",

 "US" => "United States of America",

 "IN" => "India",

 "AU" => "Australia");

// search array

// returns "Match"

echo arraySearch("us", $data) ? "Match" : "No match";

// returns "No match"

echo arraySearch("xz", $data) ? "Match" : "No match";

?>

Here, the preg_match() function is used to search both keys and values of an
array for a match. You can, of course, modify this to suit your own requirements.

NOTE

The arraySearch() function described here will not work correctly with multidimensional
arrays. To recursively search a multidimensional array, flip forward to the listing in “4.14:
Searching Nested Arrays.”

 1 1 8 P H P P r o g r a m m i n g S o l u t i o n s

4.14 Searching Nested Arrays
Problem
You want to search a series of nested arrays for a particular key or value.

Solution
Write a recursive function to traverse the arrays and run a custom search function on
each element:

<?php

// function to recursively traverse nested arrays

// and search for values matching a pattern

function arraySearchRecursive($needle, $haystack, $path=””) {

 // check if input is array

 if (!is_array($haystack)) { die ("Second argument is not array!"); }

 // declare a variable to hold matches

 global $matches;

 // iterate over array

 foreach($haystack as $key=>$value) {

 if (preg_match("/$needle/i", $key)) {

 $matches[] = array($path . "$key/", "KEY: $key");

 }

 if (is_array($value)) {

 // if a nested array

 // recursively search

 // unset the path once the end of the tree is reached

 $path .= "$key/";

 arraySearchRecursive($needle, $value, $path);

 unset($path);

 } else {

 // if not an array

 // check for match

 // save path if match exists

 if (preg_match("/$needle/i", $value)) {

 $matches[] = array($path . "$key/", "VALUE: $value");

 }

 }

 }

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 1 9

 // return the list of matches to the caller

 return $matches;

}

// define nested array

$data = array (

 "United States" => array (

 "Texas",

 "Philadelphia",

 "California" => array (

 "Los Angeles",

 "San Francisco" => array(

 "Silicon Valley"))));

// search for string "in"

// result: an array of 2 occurrences with path

print_r(arraySearchRecursive("co", $data));

?>

Comments
This listing is actually a combination of techniques discussed in the listing in “4.3:
Processing Nested Arrays” and the listing in “4.13: Searching Arrays.” Here, the
custom arraySearchRecursive() function traverses the nested array, checking
each key and value for matches to the search string with the preg_match()
function. Matches, if any, are placed in a separate $matches array. At each stage
of recursion, the “path” to the element—the sequence of array keys leading to the
element—is tracked; this path is also stored in the $matches array as an aid to
identifying the matching elements post search.

An alternative way to recursively search an array is to use the RecursiveIterat
orIterator and RecursiveArrayIterator objects, two of the new Iterators available
in PHP 5.0 and better. To do this, initialize a RecursiveIteratorIterator object (this
is an Iterator designed solely for the purpose of iterating over other recursive
Iterators) and pass it a newly minted RecursiveArrayIterator. You can now search
all the elements of the nested array(s) with a foreach() loop and a call to preg_
match(). Here’s an example:

<?php

// define associative array

$data = array (

 "United States" => array (

 "Texas",

 "Philadelphia",

 "California" => array (

 1 2 0 P H P P r o g r a m m i n g S o l u t i o n s

 "Los Angeles",

 "San Francisco" => array(

 "Silicon Valley"))));

// define search string

$needle = "il";

$matches = array();

// recursively search array

$iterator = new RecursiveIteratorIterator(new RecursiveArrayIterator ↵
($data));

foreach ($iterator as $value) {

 if(preg_match("/$needle/i", $value)) {

 $matches[] = $value;

 }

}

// print matching values

// result: ("Philadelphia", "Silicon Valley")

print_r($matches);

?>

You can read more about the RecursiveArrayIterator, the RecursiveIteratorIterat
or, and the RecursiveIterator interfaces at http://www.php.net/~helly/php/
ext/spl/.

4.15 Filtering Array Elements

Problem
You want to eliminate those elements of an array that don’t match certain criteria.

Solution
Create a custom filter for the array with PHP’s array_filter() function:

<?php

// function to test if a number is positive

function isPositive($value) {

 return ($value > 0) ? true : false;

}

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 2 1

// define array of numbers

$series = array(-10,21,43,-6,5,1,84,1,-32);

// filter out positive values

// result: (21, 43, 5, 1, 84, 1)

print_r(array_filter($series, 'isPositive'));

?>

Comments
PHP’s array_filter() function is great for identifying those array elements
that match specific, user-defined criteria. It works by running each array member
through a user-defined function and checking the return value. Those array members
associated with a true return are flagged as “special,” and placed in a separate array.

This is clearly illustrated in the previous listing. Here, the user-defined
isPositive() function returns true if its input argument is greater than 0. The
array_filter() function runs isPositive() on every member of the $series
array, and checks to see which members generate a true value. The true return
serves as a flag to filter out positive values, which are then placed in a separate
$positives array.

4.16 Sorting Arrays

Problem
You want to sort an array by key or value.

Solution
Use PHP’s sort() function on numerically indexed arrays:

<?php

// define indexed array

$animals = array("wolf", "lion", "tiger", "iguana", "bear",↵
"zebra", "leopard");

// sort alphabetically by value

// result: ("bear", "iguana", "leopard", "lion", "tiger", "wolf",

"zebra")

sort($animals);

print_r($animals);

?>

 1 2 2 P H P P r o g r a m m i n g S o l u t i o n s

Use PHP’s asort() or ksort() function on string-indexed arrays:

<?php

// define associative array

$animals = array("wolf" => "Rex", "tiger" => "William",↵
"bear" => "Leo", "zebra" => "Adam", "leopard" => "Ian");

// sort alphabetically by value, retaining keys

// result: ("zebra" => "Adam", ..., "tiger" => "William")

asort($animals);

print_r($animals);

// sort alphabetically by keys, retaining values

// result: ("bear" => "Leo", ..., "zebra" => "Adam")

ksort($animals);

print_r($animals);

?>

Comments
PHP’s array manipulation API comes with a number of functions to sort array
elements. The most commonly used one is the sort() function, which sorts
numerically indexed arrays in alphanumeric order. This function is not suitable for
associative arrays, as it destroys the key-value association of those arrays. If you
need to sort an associative array, consider using the asort() or ksort() functions,
which sort these arrays by value and key respectively while simultaneously
maintaining the key-value relationship. The previous listing illustrates all three of
these functions.

An interesting entrant in the sort sweepstakes is the natsort() function, which
sorts array elements using a natural-language algorithm. This comes in handy to sort
array values “the way a human being would.” Key-value associations are maintained
throughout the sorting process. The next listing illustrates this:

<?php

// define array

$userList = array("user1","user10","user20","user2");

// normal sort

// result: ("user1", "user10", "user2", "user20")

sort($userList);

print_r($userList);

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 2 3

// natural-language sort

// result: ("user1", "user2", "user10", "user20")

natsort($userList);

print_r($userList);

?>

TIP

You can reverse the sort order of the sort(), asort(), and ksort() functions by
replacing them with calls to rsort(), arsort(), and krsort() respectively.

4.17 Sorting Multidimensional Arrays

Problem
You want to sort a multidimensional array using multiple keys.

Solution
Use PHP’s array_multisort() function:

<?php

// create a multidimensional array

$data = array();

$data[0] = array("title" => "Net Force", "author" => "Clancy, Tom", ↵
"rating" => 4);

$data[1] = array("title" => "Every Dead Thing", "author" => "Connolly, ↵
John", "rating"=> 5);

$data[2] = array("title" => "Driven To Extremes", "author" => "Allen, ↵
James", "rating" => 4);

$data[3] = array("title" => "Dark Hollow", "author" => "Connolly, ↵
John", "rating" => 4);

$data[4] = array("title" => "Bombay Ice", "author" => "Forbes, ↵
Leslie", "rating" => 5);

// separate all the elements with the same key

// into individual arrays

foreach ($data as $key=>$value) {

 $author[$key] = $value['author'];

 $title[$key] = $value['title'];

 $rating[$key] = $value['rating'];

}

 1 2 4 P H P P r o g r a m m i n g S o l u t i o n s

// sort by rating and then author

array_multisort($rating, $author, $data);

print_r($data);

?>

Comments
If you’re familiar with Structured Query Language (SQL), you already know how the
ORDER BY clause enables you to sort a resultset by more than one field. That’s essentially
what the array_multisort() function was designed to do: it accepts a series of
input arrays and uses them as sort criteria. Sorting begins with the first array; values
in that array that evaluate as equal are sorted by the next array, and so on.

This function comes in handy when dealing with symmetrical multidimensional
arrays, like the one in the previous listing. Such an array is typically created from an
SQL resultset. To sort such an array, first break it into individual single arrays, one
for each unique key, and then use array_multisort() to sort the arrays in the
priority you desire. In such a situation, the last argument to array_multisort()
must be the original multidimensional array.

4.18 Sorting Arrays Using a Custom Sort Function

Problem
You want to sort an array using a custom sorting algorithm.

Solution
Define your sorting algorithm and use the usort() function to process an array
with it:

<?php

// function to compare length of two values

function sortByLength($a, $b) {

 if (is_scalar($a) && is_scalar($b)) {

 if (strlen($a) == strlen($b)) {

 return 0;

 } else {

 return (strlen($a) > strlen($b)) ? 1 : -1;

 }

 }

}

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 2 5

// define array

$data = array("abracadabra", "goo", "indefinitely",↵
"hail to the chief", "aloha");

// sort array using custom sorting function

// result: ("goo", "aloha", ..., "hail to the chief")

usort($data, 'sortByLength');

print_r($data);

?>

Comments
Often, PHP’s built-in sorting functions may be insufficient for your needs. For such
situations, PHP offers the usort() function, which enables you to sort an array
using a custom sorting algorithm. This sorting algorithm is nothing more than a
comparison function, which accepts two arguments and decides whether one is
larger or smaller than the other. The comparison must return a number less than 0 if
the first argument is to be considered less than the second, and a number greater than
0 if the first argument is to be considered greater than the second.

The previous listing illustrates this, presenting a comparison function that can
be used to sort array elements by their length, with the shortest items first. The
strlen() function is used to calculate the number of characters in each element;
this then serves as the basis for re-sorting the array.

4.19 Sorting Nested Arrays

Problem
You want to sort a series of nested arrays.

Solution
Write a recursive function to traverse the arrays and sort each one:

<?php

// function to compare length of two values

function sortByLength($a, $b) {

 if (is_scalar($a) && is_scalar($b)) {

 if (strlen($a) == strlen($b)) {

 return 0;

 1 2 6 P H P P r o g r a m m i n g S o l u t i o n s

 } else {

 return (strlen($a) > strlen($b)) ? 1 : -1;

 }

 }

}

// function to recursively sort

// a series of nested arrays

function sortRecursive(&$arr, $sortFunc, $sortFuncParams = null) {

 // check if input is array

 if (!is_array($arr)) { die ("Argument is not array!"); }

 // sort the array using the named function

 $sortFunc($arr, $sortFuncParams);

 // check to see if further arrays exist

 // recurse if so

 foreach (array_keys($arr) as $k) {

 if (is_array($arr[$k])) {

 sortRecursive($arr[$k], $sortFunc, $sortFuncParams);

 }

 }

}

// define nested array

$data = array (

 "United States" => array (

 "West Virginia",

 "Texas" => array(

 "Dallas", "Austin"),

 "Philadelphia", "Vermont", "Kentucky",

 "California" => array (

 "San Francisco", "Los Angeles", "Cupertino", "Mountain

View")));

// sort $data recursively using asort()

sortRecursive($data, 'asort');

print_r($data);

// sort $data recursively using custom function()

sortRecursive($data, 'usort', 'sortByLength');

print_r($data);

?>

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 2 7

Comments
This listing builds on the technique discussed in the listing in “4.3: Processing Nested
Arrays” to recursively traverse a series of nested arrays. The sortRecursive()
function accepts three arguments: an array, the name of an array sorting function (either
built-in or user-defined), and optional arguments to said function. It then traverses the
array and all the arrays internal to it, sorting each by the specified function.

Note that the array input to sortRecursive() is passed by reference, so any
changes take place to the array variable itself and not a copy.

4.20 Merging Arrays

Problem
You want to merge two or more arrays into a single array.

Solution
Use PHP’s array_merge() or array_merge_recursive() functions:

<?php

// define arrays

$statesUS = array("Maine", "New York", "Florida", "California");

$statesIN = array("Maharashtra", "Tamil Nadu", "Kerala");

// merge into a single array

// result: ("Maine", "New York", ..., "Tamil Nadu", "Kerala")

$states = array_merge($statesUS, $statesIN);

print_r($states);

?>

<?php

// define arrays

$ab = array("a" => "apple", "b" => "baby");

$ac = array("a" => "anteater", "c" => "cauliflower");

$bcd = array("b" => "ball", "c" => array("car", "caterpillar"),↵
"d" => "demon");

// recursively merge into a single array

$abcd = array_merge_recursive($ab, $ac, $bcd);

print_r($abcd);

?>

 1 2 8 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP’s array_merge() function accepts two or more arrays as arguments, and
combines them to create a single array. The behavior of this function is fairly
straightforward when dealing with numerically indexed arrays, but can trip you up
when you’re working with associative arrays: If you try merging associative arrays
that have some key names in common, only the last such key-value pair will appear
in the merged array.

To work around this problem, use the array_merge_recursive() function
when merging associative arrays. This function ensures that common keys are
recursively merged into a single sub-array and no data is lost during the merge
process. You see this in the output of the second listing in the previous code.

You can also create an associative array by merging two numerically indexed
arrays, using the array_combine() function. Elements of the first array are
converted into keys of the combined array, while elements of the second array
become the corresponding values. Here’s an example:

<?php

// define array for keys

$keys = array("UK", "US", "FR", "IN");

// define array for values

$values = array("London", "Washington", "Paris", "Delhi");

// combine into single associative array

// returns ("UK" => "London", "US" => "Washington", ...)

$capitals = array_combine($keys, $values)↵
or die ("Unable to match keys and values");

print_r($capitals);

?>

4.21 Comparing Arrays

Problem
You want to compare two arrays to find the common or different elements.

Solution
Use PHP’s array_intersect() function to find the elements common to two
arrays:

 C h a p t e r 4 : W o r k i n g w i t h A r r a y s 1 2 9

<?php

// define arrays

$salt = array("sodium", "chlorine");

$acid = array("hydrogen", "chlorine", "nitrogen");

// get all elements from $acid

// that also exist in $salt

// result: ("chlorine")

$intersection = array_intersect($acid, $salt);

print_r($intersection);

?>

Use PHP’s array_diff() function to find the elements that exist in either one
of the two arrays, but not both simultaneously:

<?php

// define arrays

$salt = array("sodium", "chlorine");

$acid = array("hydrogen", "chlorine", "nitrogen");

// get all elements that do not exist

// in both arrays simultaneously

// result: ("hydrogen", "nitrogen", "sodium")

$diff = array_unique(array_merge(↵
 array_diff($acid, $salt), array_diff($salt, $acid)

));

print_r($diff);

?>

Comments
Consider a Venn diagram (Figure 4-1) illustrating the intersection of two sets.
Assuming these sets are represented as arrays, most developers find themselves
having to deal with one of two tasks: finding the elements common to both arrays
(C), or finding the elements that exist in either one of the two arrays, but not both
simultaneously (A+B).

Obtaining the common set elements (C) is simple—the array_intersect()
function is designed to do just this. Finding the elements that exist in either one of
the two arrays, but not both simultaneously, is a little more complex, and requires
knowledge of the array_diff() function.

Given two arrays, this array_diff() function returns all the elements from the
second array that do not exist in the first. This means that you can obtain the required

 1 3 0 P H P P r o g r a m m i n g S o l u t i o n s

(A+B) set by running array_diff() twice, swapping the order of comparison
each time, and then merging the resulting arrays. You should also run the array_
unique() function on the merged array to eliminate any duplicates. This process is
illustrated in the second listing.

Note that the array_diff() and array_intersect() functions only
compare array values; they ignore the corresponding keys when calculating the
array intersection or difference. You can improve on this situation by providing the
array_diff_assoc() and array_intersect_assoc() functions, which take
keys into account as well. The following listing illustrates the difference:

<?php

// define arrays

$a = array("sodium", "chlorine", "hydrogen");

$b = array("chlorine", "sodium", "hydrogen");

// insensitive to keys

// result: ()

print_r(array_diff($a, $b));

// sensitive to keys

// result: ("sodium", "chlorine")

print_r(array_diff_assoc($a, $b));

// insensitive to keys

// result: ("sodium", "chlorine", "hydrogen")

print_r(array_intersect($a, $b));

// sensitive to keys

// result: ("hydrogen")

print_r(array_intersect_assoc($a, $b));

?>

A C B

Figure 4-1 A Venn Diagram

131

CHAPTER

5
Working with Functions

and Classes
IN THIS CHAPTER:
 5.1 Defining Custom Functions
 5.2 Avoiding Function Duplication
 5.3 Accessing External Variables from

Within a Function
 5.4 Setting Default Values for

Function Arguments
 5.5 Processing Variable-Length Argument Lists
 5.6 Returning Multiple Values from a Function
 5.7 Manipulating Function Inputs and Outputs

by Reference
 5.8 Dynamically Generating Function Invocations
 5.9 Dynamically Defining Functions
5.10 Creating Recursive Functions
5.11 Defining Custom Classes
5.12 Automatically Executing Class Initialization

and Deinitialization Commands

5.13 Deriving New Classes from Existing Ones
5.14 Checking If Classes and Methods Have

Been Defined
5.15 Retrieving Information on Class Members
5.16 Printing Instance Properties
5.17 Checking Class Antecedents
5.18 Loading Class Definitions on Demand
5.19 Comparing Objects for Similarity
5.20 Copying Object Instances
5.21 Creating Statically-Accessible Class

Members
5.22 Altering Visibility of Class Members
5.23 Restricting Class Extensibility
5.24 Overloading Class Methods
5.25 Creating “Catch-All” Class Methods
5.26 Auto-Generating Class API Documentation

 1 3 2 P H P P r o g r a m m i n g S o l u t i o n s

As with any programming language worth its salt, PHP supports functions
and classes, which you can use to make your code more modular,
maintainable, and reusable. Functions, in particular, have been well-

supported in PHP for a long time, and so most of the new developments in PHP have
focused on the object model, which has been completely redesigned to bring PHP in
closer compliance with OOP standards.

The solutions in this chapter are therefore a mix of old and new techniques.
Among the golden oldies: dealing with variable scope; using variable-length
argument lists and default arguments; extending classes; using class constructors;
and checking class ancestry. Among the brash newcomers: overloading methods;
cloning and comparing objects; using abstract classes; and protecting class members
from outside access. Together, they add up to a fairly interesting collection. See for
yourself!

5.1 Defining Custom Functions

Problem
You want to define your own functions.

Solution
Use PHP’s function keyword to name and define custom functions, and invoke
them as required:

<?php

// define function

// to calculate circle area

function getCircleArea($radius) {

 return pi() * $radius * $radius;

}

// invoke function

// for circle of radius 10

// result: "The area of a circle with radius 10 is 314.159265359"

echo "The area of a circle with radius 10 is " . getCircleArea(10);

?>

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 3 3

Comments
A function is an independent block of code that performs a specific task, and can be
use more than once at different points within the main program. Every programming
language comes with built-in functions and typically also allows developers to
define their own custom functions. PHP is no exception to this rule.

Function definitions in PHP begin with the function keyword, followed by the
function name (this can be any string that conforms to PHP’s naming rules), a list
of arguments in parentheses, and the function’s code within curly braces. Function
arguments make it possible to supply variable input to the function at run time.
Within the function itself, the return keyword is used to return the result of the
function’s operations to the calling program. In the previous example the function is
named getCircleArea(), accepts a single argument (the circle radius, represented
by $radius), and uses this argument to calculate the area of the circle.

Once a named function has been defined in the manner described previously,
using it is as simple as calling (or invoking) it by its name, in much the same way
one would call built-in functions such as implode() or exists(). An example
of such function invocation can be seen in the previous listing, which demonstrates
the newly-minted getCircleArea() function being invoked with an argument of
10 units (the circle radius) and returning a value of 314.16 units (the corresponding
circle area).

5.2 Avoiding Function Duplication

Problem
You want to test if a function has already been defined.

Solution
Use PHP’s function_exists() function:

<?php

// sample function

function doThis() {

 return false;

}

 1 3 4 P H P P r o g r a m m i n g S o l u t i o n s

// test if function exists

// result: "Function exists"

echo function_exists("doThis") ? "Function exists" :↵
"Function does not exist";

// result: "Function does not exist"

echo function_exists("doThat") ? "Function exists" :↵
"Function does not exist";

?>

Comments
It’s a good idea to check for the prior existence of a function before declaring it,
because PHP generates an error on any attempt to re-declare a previously defined
function. The function_exists() function provides an easy solution to the
problem, as illustrated in the previous example.

5.3 Accessing External Variables
from Within a Function

Problem
You want to access a variable from the main program within a function definition.

Solution
Use the global keyword within the function definition to import the variable from
the global scope:

<?php

// define variable outside function

$name = "Susan";

// access variable from within function

function whoAmI() {

 global $name;

 return $name;

}

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 3 5

// call function

// result: "Susan"

echo whoAmI();

?>

Comments
By default, variables within a function are isolated from variables outside it in PHP.
The values assigned to them, and the changes made to them, are thus “local” and
restricted to the function space alone. Often, however, there arises a need to share
a variable from the main program with the code inside a function definition. You can
accomplish this by making the variable “global,” so that it can be manipulated both
inside and outside the function. PHP’s global keyword, when prefixed to a variable
name within a function definition, takes care of making the variable global. This is
illustrated in the previous listing.

An alternative way of accomplishing the same thing is to access the variable by
name from the special $_GLOBALS associative array, as demonstrated in the next
listing:

<?php

// define variable outside function

$name = "Susan";

// access variable from within function

function whoAmI() {

 return $GLOBALS['name'];

}

// call function

// result: "Susan"

echo whoAmI();

?>

For a more detailed demonstration of variable scope inside and outside a function,
consider the following listing:

<?php

// define a variable outside the function

$name = "Joe";

 1 3 6 P H P P r o g r a m m i n g S o l u t i o n s

// define a function to alter the variable

function whoAmI() {

 // access the variable from inside the function

 global $name;

 // check the variable

 // result: "I am Joe at the beginning of the function."

 echo "I am $name at the beginning of the function.\n";

 // redefine the variable inside the function

 $name = "Jane";

 // check the variable

 // result: "I am Jane at the end of the function."

 echo "I am $name at the end of the function.\n";

}

// check the variable

// result: "I am Joe before running the function."

print "I am $name before running the function.\n";

// call the function

echo whoAmI();

// check the variable

// result: "I am Jane after running the function."

print "I am $name after running the function.\n";

?>

NOTE

PHP also comes with so-called superglobal variables (or superglobals)—variables that are always
available, regardless of whether you’re inside a function or outside it. The $_SERVER, $_
POST, and $_GET variables are examples of superglobals, which is why you can access things
like the currently executing script’s name or form values even inside a function. The good news
about superglobals is that they’re always there when you need them, and you don’t need to jump
through any hoops to use the data stored inside them. The bad news is that the superglobal club is
a very exclusive one, and you can’t turn any of your own variables into superglobals. Read more
about superglobals and variable scope at http://www.php.net/variables
.predefined and http://www.php.net/variables.scope.

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 3 7

5.4 Setting Default Values for Function Arguments

Problem
You want to set default values for one or more function arguments, thereby making
them optional.

Solution
Assign default values to those arguments in the function signature:

<?php

// define function

// with default arguments

function orderPizza($crust, $toppings, $size="12") {

 return "You asked for a $size-inch pizza with a $crust crust ↵
and these toppings: " . implode(', ', $toppings);

}

// call function without optional third argument

// result: "You asked for a 12-inch pizza with a ↵
// thin crust and these toppings: cheese, anchovies"

echo orderPizza("thin", array("cheese", "anchovies"));

?>

Comments
Normally, PHP expects the number of arguments in a function invocation to match
that in the corresponding function definition, and it will generate an error in case of
a smaller argument list. However, you might want to make some arguments optional,
using default values if no data is provided by the user. You can do this by assigning
values to the appropriate arguments in the function definition.

TIP

Place optional arguments after mandatory arguments in the function’s argument list.

 1 3 8 P H P P r o g r a m m i n g S o l u t i o n s

5.5 Processing Variable-Length Argument Lists

Problem
You want your function to support a variable number of arguments.

Solution
Use PHP’s func_get_args() function to read a variable-length argument list:

<?php

// define a function

function someFunc() {

 // get the number of arguments passed

 $numArgs = func_num_args();

 // get the arguments

 $args = func_get_args();

 // print the arguments

 print "You sent me the following arguments: ";

 for ($x=0; $x<sizeof($args); $x++) {

 print "\nArgument $x: ";

 // check if an array was passed

 // iterate and print contents if so

 if (is_array($args[$x])) {

 print " ARRAY ";

 foreach ($args[$x] as $index=>$element) {

 print " $index => $element ";

 }

 } else {

 print " $args[$x] ";

 }

 }

}

// call the function with different arguments

// returns: "You sent me the following arguments:

// Argument 0: red

// Argument 1: green

// Argument 2: blue

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 3 9

// Argument 3: ARRAY 0 => 4 1 => 5

// Argument 4: yellow"

someFunc("red", "green", "blue", array(4,5), "yellow");

?>

Comments
PHP’s func_get_args() function is designed specifically for functions that
receive argument lists of varying length. When used inside a function definition,
func_get_args() returns an array of all the arguments passed to the function;
the individual arguments can then be extracted and processed with a for() loop.
Remember that the argument list can contain a mixture of scalar variables and
arrays, so if you’re unsure what input to expect, make it a point to check the type of
each argument before deciding how to process it.

Here’s another example of this in action:

<?php

// define function that accepts

// a dynamic number of arguments

function calcSum() {

 $sum = 0;

 // get argument list as array

 $args = func_get_args();

 // process argument list

 // add each argument to previous total

 // if any of the arguments is an array

 // use a loop to process it

 for ($x=0; $x<sizeof($args); $x++) {

 if (is_array($args[$x])) {

 foreach ($args[$x] as $a) {

 $sum += $a;

 }

 } else {

 $sum += $args[$x];

 }

 }

 return $sum;

}

 1 4 0 P H P P r o g r a m m i n g S o l u t i o n s

// call function with 2 scalar arguments

// result: "The sum of 1 and 10 is 11."

echo "The sum of 1 and 10 is " . calcSum(1,10) . ".\n";

// call function with mixture

// of 3 scalar and array arguments

// result: " The sum of 1, 2, 5 and 1 is 9."

echo "The sum of 1, 2, 5 and 1 is " . calcSum(1, 2, array(5,1)) . ".\n";

?>

5.6 Returning Multiple Values from a Function

Problem
You want to return more than one value from a function.

Solution
Place the set of desired return values in an array, and return that instead:

<?php

// define function

// that returns more than one value

function getUserInfo() {

 return array("Simon Doe", "London", "simon@some.domain.edu");

}

// extract returned list into separate variables

// result: "My name is Simon Doe from London.

// Get in touch at simon@some.domain.edu"

list ($name, $place, $email) = getUserInfo();

echo "My name is $name from $place. Get in touch at $email";

?>

Comments
A PHP function can only return a single value to the caller; however, this value
may be of any supported type (scalar, array, object, and so on). So, if you’d like
a function to return multiple values, the simplest way to do this is to add them all
to an array and return that instead.

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 4 1

5.7 Manipulating Function Inputs
and Outputs by Reference

Problem
You want to pass input arguments to, or receive return values from, a function by
reference (instead of by value).

Solution
To pass an argument by reference, prefix the argument with the & symbol in the
function definition:

<?php

// define a function

// that changes a variable by reference

function changeDay(&$day) {

 $day = "Thursday";

 return $day;

}

// define a variable outside the function

$day = "Sunday";

// check variable

// result: "Before running changeDay(), it is Sunday."

echo "Before running changeDay(), it is $day.\n";

// pass variable by reference

changeDay($day);

// check variable

// result: "After running changeDay(), it is Thursday."

echo "After running changeDay(), it is $day.";

?>

 1 4 2 P H P P r o g r a m m i n g S o l u t i o n s

To return a value by reference, prefix both the function name and the function
invocation with the & symbol:

<?php

// define a function

// that returns a value by reference

function &incrementNum() {

 global $num;

 $num++;

 return $num;

}

// define a variable outside the function

$num = 0;

// invoke function

// get return value of function as reference

// result: "Number is 1."

$retVal =& incrementNum();

echo "Number is $retVal.\n";

// invoke function again

incrementNum();

// check reference

// result: "Number is 2."

echo "Number is $retVal.\n";

?>

Comments
By default, arguments to PHP functions are passed “by value”—that is, a copy of the
variable is passed to the function, with the original variable remaining untouched.
However, PHP also allows you to pass “by reference”—that is, instead of passing
a value to a function, you pass a reference to the original variable and have the
function act on that instead of a copy.

In the first example, because the argument to changeDay() is passed by
reference, the change occurs in the original variable rather than in a copy. That’s the
reason why, when you re-access the variable $day after running the function on it, it
returns the modified value “Thursday” instead of the original value “Sunday.”

It’s also possible to get a reference to a function’s return value, as in the second
example. There, $retVal is a reference to (not a copy of) a global variable.

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 4 3

So, every time the global variable changes, the value of $retVal changes as well.
If, instead, you set things up to get a copy of (not a reference to) the function’s return
value, the value of $retVal would remain 1.

NOTE

References make it possible to manipulate variables outside the scope of a function, in much
the same way as the global keyword did in the listing in “5.3: Accessing External Variables From
Within a Function.” The PHP manual makes the relationship clear when it says “…when you
declare [a] variable as global $var, you are in fact creating reference to a global variable.”
Read more about references at http://www.php.net/references.

5.8 Dynamically Generating Function Invocations

Problem
You want to dynamically generate a function invocation from a PHP variable.

Solution
Use parentheses to interpolate the variable name with the function invocation:

<?php

// sample function

function playTrack($id) {

 echo "Playing track $id";

}

// define variable for operation

$op = "play";

// build function name from variable

$func = $op . "Track";

// call function

// result: "Playing track 45"

$func(45);

?>

 1 4 4 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP supports the use of variable functions, wherein a function name is dynamically
generated by combining one or more variables. When PHP encounters such a
variable function, it first evaluates the variable(s) and then looks for a function
matching the result of the evaluation. The previous listing illustrates this, creating
a function invocation from a variable.

5.9 Dynamically Defining Functions

Problem
You want to define a function dynamically when another function is invoked.

Solution
Nest one function inside the other:

<?php

// define function

function findOil() {

 // define nested function

 // this function only becomes available

 // once the outer function has been invoked

 function startDrilling() {

 echo "Started drilling. We're gonna be rich!\n";

 }

 echo "Found an oil well. Thar she blows!\n";

}

// run functions

// returns: "Found an oil well. Thar she blows!"

findOil();

// returns: "Started drilling. We're gonna be rich!"

startDrilling();

?>

Comments
PHP supports nested functions, wherein the inner function is defined only when
the outer one is invoked. In the previous listing, the startDrilling() function

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 4 5

does not exist until after the findOil() function is called. You can verify this by
invoking startDrilling() before and after invoking findOil(); PHP will
return an “undefined function” fatal error in the first instance, but not in the second.

5.10 Creating Recursive Functions

Problem
You want to recursively perform a task.

Solution
Write a recursive function that runs repeatedly until a particular condition is met:

<?php

// recursive function

// to calculate factorial

function calcFactorial($num) {

 // define variable to hold product

 static $product = 1;

 // recurse until $num becomes 1

 if ($num > 1) {

 $product = $product * $num;

 $num--;

 calcFactorial($num);

 }

 return $product;

}

// result: "Factorial of 5 is 120"

echo "Factorial of 5 is " . calcFactorial(5);

?>

Comments
PHP supports recursive functions, which are essentially functions that call
themselves repeatedly until a particular condition is met. Recursive functions are
commonly used to process nested data collections—for example, multidimensional
arrays, nested file collections, XML trees, and so on. The previous listing illustrates

 1 4 6 P H P P r o g r a m m i n g S o l u t i o n s

a simple example of recursion—a function that calculates the factorial of a number
by repeatedly calling itself with the number, reducing it by 1 on each invocation.
Recursion stops only once the number becomes equal to 1.

Here’s another example of recursion; this one processes a directory collection and
prints a list of the files found:

<?php

// define recursive function

// to display directory contents

function recurseDir($dir) {

 // check for valid argument

 if (!is_dir($dir)) { die("Argument '$dir' is not a directory!"); }

 // open directory handle

 $dh = opendir($dir) or die ("Cannot open directory '$dir'!");

 // iterate over files

 while (($file = readdir($dh)) !== false) {

 // ignore . and .. items

 if ($file != "." && $file != "..") {

 if (is_dir("$dir/$file")) {

 // if this is a subdirectory

 // recursively process it

 recurseDir("$dir/$file");

 } else {

 // if this is a file

 // print file name and path

 echo "$dir/$file \n";

 }

 }

 }

}

// recursively process directory

recurseDir('/tmp');

?>

Here, every time the function encounters a directory entry, it first checks to see
if that value is a file or a directory. If it’s a directory, the function calls itself again
to process the directory; if it’s a file, the file name is printed. The process continues
until the end of the directory tree is reached.

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 4 7

5.11 Defining Custom Classes

Problem
You want to define your own class.

Solution
Define a class with the class keyword, populate it with properties and methods,
and spawn objects from it with the new keyword:

<?php

// define class

// for a generic computer

class Generic {

 // properties

 public $cpu;

 public $mem;

 // method to set memory specification

 public function setMemory($val) {

 $this->mem = $val;

 echo "Setting memory to $val MB...\n";

 }

 // method to set processor specification

 public function setCpu($val) {

 $this->cpu = $val;

 echo "Setting processor to \"$val\"...\n";

 }

 // method to print current configuration

 public function getConfig() {

 echo "Current configuration: $this->cpu CPU, $this->mem MB RAM\

n";

 }

}

// create an object of the class

$myPC = new Generic;

 1 4 8 P H P P r o g r a m m i n g S o l u t i o n s

// set processor and memory

$myPC->setCpu("Pentium IV");

$myPC->setMemory(1024);

// display configuration

// result: "Current configuration: Pentium IV CPU, 1024 MB RAM"

$myPC->getConfig();

?>

Comments
In PHP, a class is simply a group of related functions and variables. It can be used
to as a template to spawn specific instances, referred to as objects. Every object has
certain characteristics, or properties, and certain predefined functions, or methods.
These properties and methods of the object correspond directly with the variables
and functions within the class definition.

Once a class has been defined, PHP allows you to spawn as many instances as you
like from it. Each of these instances is a completely independent object, with its own
properties and methods, and can thus be manipulated independently of other objects.
This comes in handy in situations where you need to spawn more than one instance
of an object—for example, two simultaneous database links for two simultaneous
queries, or two shopping carts.

In PHP, class definitions begin with the class keyword, followed by the class
name (any string that conforms to PHP’s variable naming rules) and the class
members—methods and properties—within curly braces. Class methods and
properties are defined in the normal way, with an optional visibility declaration
preceding each. Three levels of visibility exist, ranging from most visible to least
visible: “public,” “protected,” and “private” (learn more about visibility in the listing
in “5.20: Copying Object Instances”).

NOTE

In case you need to access functions or variables within the class definition itself, PHP offers the
$this keyword, which is used to access class methods and properties that are “local” to the class.

Defining a class is only half the puzzle—the other half consists of creating and
using an instance of the class. You use the new keyword to create a new instance of
the class, which you can then assign to a PHP variable in the usual manner. Class
methods and properties can then be accessed via this variable, using -> notation to
connect the two. In the previous listing, the class is named Generic and it contains

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 4 9

two properties ($cpu and $mem) and three methods (setMemory(), setCpu(),
and getConfig()). The $myPC variable represents an instance of this class, with
specific values set for the $cpu and $mem properties.

5.12 Automatically Executing Class Initialization
and Deinitialization Commands

Problem
You want to automatically execute certain statements when an instance of a class is
created or destroyed.

Solution
Use a class constructor and/or destructor:

<?php

// define class

class testClass {

 // PHP 5 constructor

 function __construct() {

 echo "Running the constructor...\n";

 }

 // PHP 5 destructor

 function __destruct() {

 echo "Running the destructor...\n";

 }

}

// create an object

// result: "Running the constructor..."

$test = new testClass();

// then destroy it

// result: "Running the destructor..."

unset($test);

?>

 1 5 0 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP makes it possible to automatically execute code when a new instance of a
class is created, using a special class method called a constructor. You can also
run code when a class instance ends using a so-called destructor. Constructors and
destructors can be implemented by defining functions named __construct() and
__destruct() within the class, and placing object (de)initialization code within
them. The previous listing illustrates how this might work, while the following
listing contains a more concrete example of it in action:

<?php

// define class

// to manually implement file locking

class fileLock {

 // define properties

 private $file;

 // constructor

 public function __construct($file) {

 $this->file = $file;

 $this->lock();

 }

 // method to create lock file

 public function lock() {

 // clear file cache

 clearstatcache();

 // check if a lock file already exists

 // if not, create one

 // if it does, retry after a few seconds

 echo "Attempting to lock file...\n";

 if (!file_exists($this->file . ".lock")) {

 touch ($this->file . ".lock", time()) ↵
or die("ERROR: Could not create lock file!\n");

 echo "File locked!\n";

 } else {

 echo "Lock exists, retrying after 2 seconds...\n";

 sleep(2);

 $this->lock();

 }

 }

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 5 1

 // method to write data to locked file

 public function write($data) {

 // try to write to file

 // display error and return if unsuccessful

 echo "Attempting file write...\n";

 if (!$fp = fopen($this->file, "a+")) {

 echo "ERROR: Cannot open file for writing!\n";

 return false;

 }

 if (!fwrite($fp, $data)) {

 echo "ERROR: Cannot write to file!\n";

 return false;

 }

 if (!fclose($fp)) {

 echo "ERROR: Cannot close file!\n";

 }

 echo "Data written to file!\n";

 }

 // destructor

 public function __destruct() {

 $this->unlock();

 }

 // method to remove lock file

 public function unlock() {

 // delete lock file

 echo "Unlocking file...\n";

 unlink ($this->file . ".lock") ↵
or die("ERROR: Cannot remove lock file!");

 echo "File unlocked!\n";

 }

}

// create object

// set file lock

$fl = new fileLock("/tmp/data.txt");

// write data to file

$fl->write("I can see you!");

// remove lock

unset($fl);

?>

 1 5 2 P H P P r o g r a m m i n g S o l u t i o n s

In this example, a new instance of the fileLock class is instantiated and passed the
name of the target file. Internally, the class constructor assigns this name to a class
property, and then runs the lock() method to place a lock on the file. After the file
has been successfully locked, the write() method is used to write data to the file.
Following a successful write operation, the object instance is destroyed with unset();
internally, this activates the object destructor, which takes care of calling the unlock()
method to remove the lock placed on the file.

It’s worth noting that important differences exist between PHP 4.x and PHP 5.x
with regard to constructors and destructors. As you’ve seen, in PHP 5.x, constructor
and destructor methods must be named __construct() and __destruct(),
respectively. However, PHP 4.x does not support destructors, and constructor
methods must have the same name as the class.

To keep your class code portable between PHP 4.x and 5.x, therefore, it’s a good
idea to define an older PHP 4.x-style constructor to serve as a pointer to the newer
PHP 5.x constructor. Here’s an example of one such portable class definition:

<?php

// define class

class testClass {

 // PHP 5 constructor

 function __construct() {

 echo "Running the constructor...\n";

 }

 // PHP 4 constructor

 function testClass() {

 $this->__construct();

 }

}

// create an instance of the class

// result: "Running the constructor..."

$obj = new testClass();

?>

It’s important to remember, also, that the three levels of visibility introduced
in PHP 5.x are also not supported in PHP 4.x, and so the keywords public,
private, and protected in a PHP 4.x class definition will produce fatal errors.

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 5 3

5.13 Deriving New Classes from Existing Ones

Problem
You want to derive a new class from an existing class.

Solution
Use the extends keyword to create a derived class that inherits all the methods and
properties of the base class:

<?php

// define base class

class Generic {

 // properties

 protected $cpu;

 protected $mem;

 // constructor

 function __construct() {

 echo "Initializing system configuration...\n";

 }

 // method to set memory specification

 public function setMemory($val) {

 $this->mem = $val;

 echo "Setting memory to $val MB...\n";

 }

 // method to set processor specification

 public function setCpu($val) {

 $this->cpu = $val;

 echo "Setting processor to \"$val\"...\n";

 }

 // method to print current configuration

 public function getConfig() {

 echo "Current configuration: $this->cpu CPU, $this->mem MB RAM\n";

 }

 1 5 4 P H P P r o g r a m m i n g S o l u t i o n s

 // destructor

 public function __destruct() {

 echo "De-initializing system configuration...\n";

 }

}

// define extended class

class Server extends Generic {

 // define some more properties

 protected $disk;

 // define some more methods

 function __construct() {

 // run parent constructor

 parent::__construct();

 }

 // method to set disk drive specification

 function setDisk($val) {

 $this->disk = $val;

 echo "Setting disk storage to $val GB...\n";

 }

 // method to add memory

 function addMemory($val) {

 $this->mem += $val;

 echo "Adding $val MB of memory\n";

 }

 // override parent method to print current configuration

 public function getConfig() {

 echo "Current configuration: " . $this->cpu . ↵
" CPU, $this->mem MB RAM, " . $this->disk . " GB disk storage\n";

 }

}

// create an object of the derived class

$webServer = new Server;

// use methods inherited from base class

$webServer->setMemory(2048);

$webServer->setCpu("Intel Pentium IV");

$webServer->setDisk(450);

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 5 5

// use method defined in derived class

$webServer->addMemory(2048);

// display configuration

// result: "Current configuration: Intel Pentium IV CPU, 4096 MB RAM, ↵
// 450 GB disk storage"

$webServer->getConfig();

?>

Comments
Two important features of object-oriented programming are extensibility and
inheritance. Very simply, this means that you can create a new class based on
an existing class, add new features (read: properties and methods) to it, and then
create objects based on this new class. These objects will contain all the features
of the original parent class, together with the new features of the child class.

The extends keyword is used to extend a parent class to a child class. All the
functions and variables of the parent class immediately become available to the
child class. This is clearly visible in the previous listing, where the $webServer
object, which is an instance of the derived Server class, uses methods and properties
originally defined in the base Generic class.

In this example, it is worthwhile noting that the parent class’ constructor has
been explicitly called in the child class’ constructor. This ensures that all necessary
initialization of the parent class is carried out when a child class is instantiated.
Child-specific initialization can then be done in the child class’ constructor.

NOTE

If a child class does not have a constructor, the parent class’ constructor is automatically called.

5.14 Checking If Classes and Methods
Have Been Defined

Problem
You want to check if a particular class or class method has been defined.

 1 5 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PHP’s class_exists() function to test for the existence of a class:

<?php

// sample class

class alphaClass {

 public function __construct() {

 return false;

 }

}

// test if class exists

// result: "Class exists"

echo class_exists("alphaClass") ? "Class exists" : ↵
"Class does not exist";

// result: "Class does not exist"

echo class_exists("betaClass") ? "Class exists" : ↵
"Class does not exist";

?>

Use PHP’s method_exists() function to test for the existence of a class
method:

<?php

// sample class

class Dog {

 public function bark() {

 echo "Bow wow wow!";

 }

}

// create instance of class

$spaniel = new Dog;

// test if method exists

// using object instance

// result: "Method exists"

echo method_exists($spaniel, "bark") ? "Method exists" : ↵
"Method does not exist";

// result: "Method does not exist"

echo method_exists($spaniel, "growl") ? "Method exists" : ↵
"Method does not exist";

?>

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 5 7

Comments
The class_exists() function accepts a class name and checks the list of declared
classes to see if it exists, while the method_exists() function accepts an object
instance and a method name, and checks the instance to see if it contains a matching
method.

You can also use the is_callable() function to test for the existence of a class
method using the class name (instead of an object instance). Here’s an example:

<?php

// sample class

class Dog {

 public function bark() {

 echo "Bow wow wow!";

 }

}

// test if method exists

// using class name

// result: "Method exists"

echo is_callable(array("Dog", "bark")) ? "Method exists" : ↵
"Method does not exist";

?>

To check for the existence of a method within a class from within the class
definition itself, use the $this construct in combination with either method_
exists() or is_callable(). Here’s an example:

<?php

// sample class

class Cat {

 // check if a method exists

 // within the class itself

 public function canBark() {

 return method_exists($this, "bark");

 }

}

// create instance of class

$tomcat = new Cat;

 1 5 8 P H P P r o g r a m m i n g S o l u t i o n s

// returns false as Cat::bark() is undefined

// result: "Obviously I can't bark, I'm a cat!"

echo $tomcat->canBark() ? "Look, I can bark like a dog" : ↵
"Obviously I can't bark, I'm a cat!";

?>

5.15 Retrieving Information on Class Members

Problem
You want to obtain information about a specific class or instance, including
information on class members and instance properties.

Solution
Use PHP’s get_class(), get_parent_class(), get_class_methods(),
get_class_vars(), and get_object_vars() methods:

<?php

// define base class

class Dog {

 // define some properties

 public $name;

 public $age;

 // define some methods

 public function __construct() {

 echo "Constructing a Dog.\n";

 }

 public function wagTail() {

 echo "Hmmm...this is a happy Dog.\n";

 }

}

// extend class

class Bloodhound extends Dog {

 // define some extra properties

 public $color;

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 5 9

 // define some extra methods

 public function sniff() {

 echo "This Dog can smell food a mile away\n";

 }

 public function __destruct() {

 echo "Destroying a Dog.\n";

 }

}

// create an instance of the extended class

$myDog = new Bloodhound();

$myDog->name = "Barry";

$myDog->age = 5;

$myDog->color = "black";

// retrieve class name from instance

echo "Class: " . get_class($myDog) . "\n";

// retrieve parent class name from instance

echo "Parent class: " . get_parent_class(get_class($myDog)) . "\n";

// get and print list of class properties

$vars = get_class_vars(get_class($myDog));

echo "Class properties: ";

foreach ($vars as $key => $value) {

 if (!isset($value)) { $value = "<undef>"; }

 echo "$key=$value ";

}

echo "\n";

// get and print list of object methods

$methods = get_class_methods(get_class($myDog));

echo "Class methods: ";

foreach ($methods as $m) {

 echo "$m ";

}

echo "\n";

// get and print list of instance properties

$vars = get_object_vars($myDog);

echo "Instance properties: ";

 1 6 0 P H P P r o g r a m m i n g S o l u t i o n s

foreach ($vars as $key => $value) {

 if (!isset($value)) { $value = "<undef>"; }

 echo "$key=$value ";

}

echo "\n";

?>

Comments
As the previous listing illustrates, PHP comes with quite a few functions to retrieve
detailed information on a class or instance. The get_class() function returns
the name of the class that spawned a specific object instance, while the get_
parent_class() function provides the name of its parent class. The get_class_
methods() function lists the methods defined for a specific class, while the get_
class_vars() methods lists the corresponding class properties. Similar, but not
identical, to the get_class_vars() method is the get_object_vars() method,
which works on an instance instead of a class; this function lists defined instance
properties together with their current values.

TIP

To test whether an object is an instance of a specific class, use the instanceof operator. See
the listing in “5.17: Checking Class Antecedents” for an example.

An alternative way of obtaining the same information is to use reflection, one of
the new features in PHP. Reflection makes it simple to look inside a class and obtain
detailed information on its constants, methods, properties, and interfaces.

The easiest way to obtain class information with reflection is to initialize an object
of the ReflectionClass class with the name of the class to be inspected. Here’s how:

<?php

// define base class

class Dog {

 // define some properties

 public $name;

 public $age;

 // define some methods

 public function __construct() {

 echo "Constructing a Dog.\n";

 }

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 6 1

 public function wagTail() {

 echo "Hmmm...this is a happy Dog.\n";

 }

}

// use reflection to inspect the class

Reflection::export(new ReflectionClass('Dog'));

?>

Or, you can use the ReflectionClass’ getConstants(), getMethods(), and
getProperties() methods to obtain information on class constants, methods, and
properties, respectively:

<?php

// define base class

class Dog {

 // define some properties

 public $name;

 public $age;

 // define some methods

 public function __construct() {

 echo "Constructing a Dog.\n";

 }

 public function wagTail() {

 echo "Hmmm...this is a happy Dog.\n";

 }

}

// use reflection to inspect the class

$reflector = new ReflectionClass('Dog');

// list constants

echo "Constants: ";

foreach ($reflector->getConstants() as $key => $value) {

 echo "$key=$value ";

}

echo "\n";

// list properties

echo "Properties: ";

$vars = $reflector->getProperties();

 1 6 2 P H P P r o g r a m m i n g S o l u t i o n s

foreach ($vars as $obj) {

 echo $obj->getName() . " ";

}

echo "\n";

// list methods

echo "Methods: ";

$methods = $reflector->getMethods();

foreach ($methods as $obj) {

 echo $obj->getName() . " ";

}

echo "\n";

?>

5.16 Printing Instance Properties

Problem
You want to print the current values of an object’s properties.

Solution
Use a foreach() loop to iterate over the instance’s properties, and display their
contents with echo:

<?php

// define class

class Dog {

 // define some properties

 public $breed;

 public $name;

 public $age;

 // define some methods

 public function __construct() {

 echo "Constructing a Dog.\n";

 }

}

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 6 3

// create object

$doggy = new Dog();

$doggy->name = "Tipsy";

$doggy->breed = "Bloodhound";

$doggy->age = 7;

// iterate over object properties

// print properties and current values

foreach ($doggy as $key => $value) {

 echo "$key: $value\n";

}

?>

Comments
PHP now offers simplified access to the properties and corresponding values of
a class instance. It is now possible to iterate over an object’s properties as though
they were an associative array, with a foreach() loop and appropriate temporary
variables. The process is illustrated in the previous listing.

5.17 Checking Class Antecedents

Problem
You want to find out if an object is an instance of a particular class, or has a
particular class in its parentage.

Solution
Use PHP’s instanceof operator and is_subclass_of() functions:

<?php

// define base class

class Dog {

 // some code

}

// extend class

class Bloodhound extends Dog {

 // some code

}

 1 6 4 P H P P r o g r a m m i n g S o l u t i o n s

// create object instance

$spike = new Bloodhound;

// returns true

// result: "$spike is an instance of Bloodhound"

echo ($spike instanceof Bloodhound) ? "\$spike is an instance ↵
of Bloodhound" : "\$spike is not an instance of Bloodhound";

// returns true

// result: "$spike is a subclass of Dog"

echo is_subclass_of($spike, "Dog") ? "\$spike is a subclass of ↵
Dog" : "\$spike is not a subclass of Dog";

?>

Comments
PHP’s instanceof operator and is_subclass_of() function accept two
arguments—an object and the name of a class—and check whether the object
is descended from the named class. The difference between instanceof and
is_subclass_of() is subtle but important: Both return true if the object has the
named class in its parent tree, but instanceof also returns true if the object itself is
an instance of the named class while is_subclass_of() returns false in this case.

5.18 Loading Class Definitions on Demand

Problem
You want to have PHP find and read class definition files dynamically whenever it
encounters a request for new object creation.

Solution
Use the __autoload() function to define how PHP locates and loads class
definitions:

<?php

// function to automatically look for

// and load class definitions as needed

function __autoload($class) {

 require("defs/" . $class . ".php");

}

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 6 5

// create an instance of the FormHandler class

$obj = new FormHandler();

?>

Comments
PHP classes are usually stored in independent files, which must be read into a script
with include() or require() before objects can be spawned from them. For
program code that uses objects heavily, this results in numerous calls to include()
or require() at the top of every script, adding to clutter and making maintenance
difficult.

Earlier, developers would work around this problem by writing a single
initialization function that located and loaded all the necessary class definition
files. This is no longer necessary, because the PHP engine now supports a special
__autoload() function designed specifically for this task. If the __autoload()
function is defined, PHP will use the code within the function to find and load
class definitions automatically. This is illustrated in the previous listing, where the
__autoload() function automatically searches the defs/ directory for a file
matching the requested class and loads it if available.

Needless to say, you can customize the behavior of this function to load definitions
from other sources as well—for example, from a database or a different file system.
Another interesting possibility involves using namespaces (similar to those in XML)
to name PHP classes; these namespaces can then be translated into actual disk
locations, allowing simple and efficient categorization of your code. Consider the
following simple example, which illustrates how this might work:

<?php

// function to automatically look for

// and load class definitions as needed

// using namespaces

function __autoload($class) {

 $filePath = implode("/", explode("_", $class)) . ".php";

 require("defs/$filePath");

}

// look in the Page/Form sub-directory for the class definition

$obj = new Page_Form_TextBox();

?>

Here, the name of the class provides a clue to its location on disk. The name
is split into segments on the basis of a separator (here, an underscore), and these

 1 6 6 P H P P r o g r a m m i n g S o l u t i o n s

segments are used to generate the directory location of the class definition file. The
contents of this file are then read into memory by the __autoload() function,
providing a system for on-demand loading of class definitions.

5.19 Comparing Objects for Similarity

Problem
You want to compare two objects to see if they belong to the same class and have the
same properties and values.

Solution
Use PHP’s == operator:

<?php

// sample class

class Session {

 public $id;

 function __construct($id) {

 $this->id = $id;

 }

}

// create two object instances

$clientA = new Session(100);

$clientB = new Session(100);

$clientC = new Session(200);

// compare independent, identical instances with ==

// result: "true"

echo ($clientA == $clientB) ? "true" : "false";

// compare independent, different instances with ==

// result: "false"

echo ($clientA == $clientC) ? "true" : "false";

?>

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 6 7

Comments
PHP’s == operator returns true if the objects being compared are instances of the
same class and have the same set of property-value pairs.

To test if two PHP variables actually refer to the same object instance, use the ===
operator instead. Here’s an example:

<?php

// sample class

class Session {

 public $id;

 function __construct($id) {

 $this->id = $id;

 }

}

// create two object instances

$clientA = new Session(100);

$clientARef =& $clientA;

$clientB = new Session(100);

// compare independent, identical instances with ===

// result: "false"

echo ($clientA === $clientB) ? "true" : "false";

// compare an instance and its reference with ===

// result: "true"

echo ($clientA === $clientARef) ? "true" : "false";

?>

5.20 Copying Object Instances

Problem
You want to create an exact copy of a class instance.

 1 6 8 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Clone the primary class instance and transfer its properties to the copy with PHP’s
clone keyword:

<?php

// sample class

class Dog {

 // properties

 public $name;

 public $age;

 // methods

 public function getInfo() {

 echo "I am $this->name, $this->age years old\n";

 }

}

// create instance of class

$spaniel = new Dog;

// set properties

$spaniel->name = "Sam Spade";

$spaniel->age = 6;

// clone object

$terrier = clone $spaniel;

// get properties (clone)

// result: "I am Sam Spade, 6 years old"

$terrier->getInfo();

?>

Comments
The clone keyword makes it possible to easily create an exact copy of a class
instance. All the properties of the original object are transferred to the clone.

By defining a special __clone() method in the class, you can automatically
execute certain program statements when an object of that class is cloned. This
is useful to do clone-specific initialization, or to make adjustments to specific
properties of the clone. Here’s an extension of the previous example, which appends
the word “clone” to the name property of all clones:

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 6 9

<?php

// sample class

class Dog {

 // properties

 public $name;

 public $age;

 // methods

 public function getInfo() {

 echo "I am $this->name, $this->age years old\n";

 }

 // method to run on clone operations

 // alter a property of the clone

 public function __clone() {

 $this->name .= " (clone)";

 }

}

// create instance of class

$spaniel = new Dog;

// set properties

$spaniel->name = "Sam Spade";

$spaniel->age = 6;

// get properties (original)

// result: "I am Sam Spade, 6 years old"

$spaniel->getInfo();

// clone object

$terrier = clone $spaniel;

// get properties (clone)

// result: "I am Sam Spade (clone), 6 years old"

$terrier->getInfo();

?>

NOTE

Comparing an object and its clone with the == operator will return true (unless the __
clone() method previously altered a property of the clone), while the same comparison
performed with the === operator will always return false. For more information on comparing
objects, see the listing in “5.19: Comparing Objects for Similarity.”

 1 7 0 P H P P r o g r a m m i n g S o l u t i o n s

5.21 Creating Statically-Accessible Class Members

Problem
You want to create a class property or method that can be used without first
instantiating an object of the class.

Solution
Use PHP’s static keyword on the corresponding property or method:

<?php

// sample class

class Instance {

 // define static property

 static $instanceCounter = 0;

 // constructor

 // increments ID every time a

 // new instance is created

 public function __construct() {

 echo "Creating new Instance...\n";

 self::$instanceCounter++;

 }

 // method to return current instance ID

 public function getInstanceCounter() {

 return self::$instanceCounter;

 }

}

// create instances

$a = new Instance;

$b = new Instance;

// retrieve counter value

// correct result: "There have been 2 Instances created"

echo "There have been " . $a->getInstanceCounter() . " Instances ↵
created\n";

// incorrect result: "There have been Instances created"

echo "There have been " . $a->instanceCounter . " Instances created\n";

?>

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 7 1

<?php

// sample class

class Baby {

 // define static method

 public static function factory() {

 return new Baby;

 }

 // constructor

 // private, so that it cannot be

 // called directly

 private function __construct() {

 echo "Creating a Baby...\n";

 }

}

// create an instance of the class

$boy = Baby::factory(); // correct

$boy = new Baby(); // wrong, will generate fatal error

?>

Comments
PHP supports the static keyword for class methods and properties. Essentially,
this keyword lets you create properties or methods that are independent of class
instances. You use a static property or method from outside the class, without first
initializing an object of the class.

The first listing demonstrates the use of the static keyword with class properties,
by building a simple instance counter. Here, because the $instanceID variable is
a static class property, only one copy of it will exist at any time (regardless of how
many instances of the class are created). Each time a new instance is created, the
class constructor increments the $instanceID variable by 1. In this manner, the
static $instanceID property serves as a counter, making it easy to find out how
many instances of the class have been created. Note that because the $instanceID
variable is static, it cannot be accessed from a class instance with instance-
>property notation.

The second listing demonstrates object creation using a static class method. Here,
the only way to create a new object is via the static method factory() which,
being static, can only be accessed from outside the class with class::method
notation. Any attempt to create an object instance with the new keyword will be
rejected and cause a fatal error, because the class constructor is marked private.

 1 7 2 P H P P r o g r a m m i n g S o l u t i o n s

5.22 Altering Visibility of Class Members

Problem
You want to restrict certain methods and/or properties from being accessed through
an object instance or a derived class.

Solution
Use the public, private, and protected keywords to define the level of
accessibility (visibility) of class methods and properties:

<?php

// sample class

class testClass {

 // define some properties

 public $publicVar;

 private $privateVar;

 protected $protectedVar;

 // define some methods

 public function publicMethod() { return; }

 private function privateMethod() { return; }

 protected function protectedMethod() { return; }

}

// create instance of class

$dummy = new testClass;

// attempt to set properties

$dummy->publicVar = 255; // works

$dummy->privateVar = false; // generates error

$dummy->protectedVar = "Email address"; // generates error

// attempt to run methods

$dummy->publicMethod(); // works

$dummy->privateMethod(); // generates error

$dummy->protectedMethod(); // generates error

?>

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 7 3

Comments
PHP supports the concept of visibility in the object model. Visibility controls the
extent to which object properties and methods can be manipulated by the caller, and
plays an important role in defining how open or closed a class is. Three levels of
visibility exist, ranging from most visible to least visible; these correspond to the
public, protected, and private keywords.

By default, class methods and properties are “public”; this allows the calling
script to reach inside your object instances and manipulate them directly. If you
don’t like the thought of this intrusion, you can mark a particular property or method
as private or protected, depending on how much control you want to cede over the
object’s internals. “Private” methods and properties are only accessible within the
base class definition, while “protected” methods and properties are accessible within
both base and inherited class definitions. Attempts to access these properties or
methods outside their visible area produces a fatal error that stops script execution.

Table 5-1 explains the differences in the three levels of visibility in greater detail.

5.23 Restricting Class Extensibility

Problem
You want to place restrictions on class inheritance and extensibility—for example,
you want to force certain methods to always be defined in child classes, or prevent
particular classes or methods from being extended at all.

Method or Property
Marked as

Accessible from
Class Definition

Accessible from
Class Instance

Accessible from
Extended Class
Definition

Accessible from
Extended Class
Instance

Public Yes Yes Yes Yes

Protected Yes No Yes No

Private Yes No No No

Table 5-1 Differences in PHP visibility levels

 1 7 4 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use the final keyword to prevent methods (or classes) from being extended:

<?php

// define class

final class Generic {

 public function __construct() {

 echo "Initializing system configuration...\n";

 }

}

// extend class

// generates fatal error

// because class Generic cannot be extended

class Server extends Generic {

 public function __construct() {

 parent::__construct();

 }

}

?>

Use an abstract class to mark methods as mandatory:

<?php

// define abstract class

abstract class addingMachine {

 // define abstract methods

 abstract public function add();

 abstract public function subtract();

}

// implement abstract class

// generates fatal error

// because definition does not include

// mandatory methods add() and subtract()

class Calculator extends addingMachine {

 // constructor

 public function __construct ($a, $b) {

 $this->a = $a;

 $this->b = $b;

 }

}

?>

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 7 5

Comments
PHP enables developers to impose strict control over the manner in which classes
are extended. For example, it’s now possible to prevent a class or class method from
being extended in a derived class, by prefixing the class name or method name with
the final keyword. Any attempt to extend the class or override the method, as the
case may be, will produce a fatal error. An example of this can be seen in the first
listing.

PHP also allows developers to mark certain class methods as mandatory, and
require that they be defined in derived classes. This is done by declaring the
mandatory method(s), as well as the class encapsulating them, as abstract. Classes
extending an abstract class must implement those methods marked as abstract;
failure to do so will produce a fatal error when the class definition is loaded. The
second listing demonstrates this.

NOTE

PHP will generate an error if a class definition contains abstract methods, but is not itself marked
abstract. As the PHP manual puts it, “any class that contains at least one abstract method must
also be abstract.”

5.24 Overloading Class Methods

Problem
You want to “overload” a class method so that it behaves differently based on the
number of arguments or data types passed to it.

Solution
Define the special __call() method in the class and use a switch/case statement
within it to execute different code depending on the arguments and/or data types
received:

<?php

// define class

class XYCoordinate {

 public $data;

 1 7 6 P H P P r o g r a m m i n g S o l u t i o n s

 public function __construct($x, $y) {

 $this->data = array($x, $y);

 }

}

// define class

class Renderer {

 // define overloaded method

 public function __call($method, $args) {

 // check for allowed method names

 if ($method == "render") {

 $numArgs = count($args);

 // execute different code

 // depending on number of arguments passed

 if ($numArgs == 1) {

 echo "Rendering a Point...\n";

 } else if ($numArgs == 2) {

 echo "Rendering a Line...\n";

 } else if ($numArgs >= 3) {

 echo "Rendering a Polygon...\n";

 } else {

 die("ERROR: Insufficient data\n");

 }

 } else {

 die ("ERROR: Unknown method '$method'\n");

 }

 }

}

// create instance

$r = new Renderer();

// call method with one argument

// result: "Rendering a Point..."

$r->render(new XYCoordinate(1,2));

// call same method with two arguments

// result: "Rendering a Line..."

$r->render(new XYCoordinate(1,2), new XYCoordinate(20,6));

// call same method with three arguments

// result: "Rendering a Polygon..."

$r->render(new XYCoordinate(1,2), new XYCoordinate(20,6),

new XYCoordinate(4,4), new XYCoordinate(18,4));

?>

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 7 7

Comments
PHP enables you to “overload” a class method so that it behaves differently under
different circumstances. The previous listing illustrates, defining a special __call()
method that executes different code depending on whether it is called with one, two,
or more than two arguments (for information on the special __call() method, see
the listing in “5.26: Auto-Generating Class API Documentation”).

It’s also possible to overload a method so it responds differently to different data
types. The next listing illustrates this, defining a virtual invert() method via
__call() that inverts the supplied argument and returns it to the caller. Depending
on whether the supplied argument is a Boolean, string, number, or array, a different
technique is used to create the inverted value.

<?php

// define class

class overloadedClass {

 // define overloaded method

 public static function __call($method, $args) {

 // check method name

 if ($method == "invert") {

 // check number of arguments

 if (sizeof($args) == 1) {

 $arg = $args[0];

 // check argument type

 // and perform appropriate task

 if (is_string($arg)) {

 return strrev($arg);

 } else if (is_numeric($arg)) {

 return 1/$arg; // reciprocal of number

 } else if (is_array($arg)) {

 return array_reverse($arg);

 } else if (is_bool($arg)) {

 return ($arg === FALSE) ? true : false;

 } else if (is_null($arg)) {

 return null;

 }

 } else {

 die ("ERROR: Incorrect number of arguments\n");

 }

 1 7 8 P H P P r o g r a m m i n g S o l u t i o n s

 } else {

 die ("ERROR: Unknown method '$method'\n");

 }

 }

}

// create instance

$o = new overloadedClass;

// execute overloaded method with different datatypes

echo $o->invert("egg") . "\n"; // result: "gge"

echo $o->invert(true) . "\n"; // result: false

echo $o->invert(2) . "\n"; // result: 0.5

// result: ('t', 'a', 'c')

print_r($o->invert(array("c", "a", "t"))) . "\n";

?>

NOTE

PHP’s version of overloading is not, in actual fact, “true” overloading. As understood by other,
stronger, object-oriented implementations (Java springs to mind), overloading refers to a situation
where the same method behaves differently depending on the scope in which it is called, or the
arguments passed to it. So, an overloaded add() method might perform concatenation when
called with string arguments, but mathematical addition when called with numeric arguments.
PHP’s version of overloading does not currently conform to this other, more widely-accepted
meaning of the term. True overloading may, however, still be simulated in PHP through creative
use of the __call() function and a series of switch/case statements and conditional
tests, as demonstrated in this listing—look at http://www.php.net/oop5
.overloading for some more examples.

5.25 Creating “Catch-All” Class Methods

Problem
You want to create a “catch-all” method that intercepts and handles all method calls
for a class.

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 7 9

Solution
Define the special __call() method in the class and use it to intercept requests for
nonexistent methods:

<?php

// define class

class virtualMethodClass {

 // define method

 // to intercept all calls for ↵
 // methods that are not already defined

 function __call($method, $args) {

 echo "You called method [$method] with arguments [" . ↵
implode(", ", $args) . "]\n";

 }

}

// create object instance

$obj = new virtualMethodClass();

// call a method that does not exist

// result: "You called method [calculateArea] with arguments []"

$obj->calculateArea();

// call another method that does not exist

// with arguments

// result: "You called method [jump] with arguments [10, inches]"

$obj->jump("10", "inches");

?>

Comments
Normally, PHP generates an error if you attempt to call a class method that does
not exist. However, PHP 5.x introduced the ability to “overload” class methods,
by enabling you to define a special __call() method that dynamically handles
requests for nonexistent class methods.

One use of this new capability might be to add sophisticated error handling to
your class, to deal gracefully with bad method calls; another might be to create
“virtual” methods that don’t actually exist in the class definition. Because __call()
receives two pieces of information—the name of the method, and the arguments
supplied to it—it’s fairly easy to write conditional tests to deal with a variety of
different situations within __call() itself.

 1 8 0 P H P P r o g r a m m i n g S o l u t i o n s

The next listing provides a concrete example of how __call() can serve as a
provider of an entire family of “virtual” methods to a class. In this example, __
call() intercepts get(Property)() and set(Property)() method calls
and internally manipulates the corresponding object property, either retrieving its
current value for the caller or setting it to a new value. Thus, a call to the nonexistent
class method getAge() is intercepted by __call() and internally translated into
a request for the current value of the class property age.

<?php

// define class

class Dog {

 // define properties

 private $breed;

 private $name;

 private $age;

 // define a method

 // to handle all set() and get() requests

 function __call($method, $args) {

 // if get()

 // check if the property exists

 // return its value

 if (substr($method, 0, 3) == "get") {

 $property = substr($method, 3);

 foreach ($this as $key => $value) {

 if (strtolower($property) == strtolower($key)) {

 return $value;

 }

 }

 // if set()

 // check if the property exists

 // alter its value

 } else if (substr($method, 0, 3) == "set") {

 $property = substr($method, 3);

 foreach ($this as $key => $value) {

 if (strtolower($property) == strtolower($key)) {

 $this->{$key} = $args[0];

 }

 }

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 8 1

 // for all other calls

 // generate an error

 } else {

 trigger_error ("Could not find method $method", E_USER_

ERROR);

 }

 }

}

// create an instance of the class

$doggy = new Dog();

// set some properties

// using methods that do not actually exist

// all these method calls are handled by __call()

$doggy->setName("Ronald");

$doggy->setAge(3);

$doggy->setBreed("sheepdog");

// check if the properties have been set

print_r($doggy);

// this will generate an error

// because it is not a set() or get() call

$doggy->walk();

?>

Calls for methods other than get(Property)() and set(Property)() are
diverted to the PHP error-handling mechanism. This behavior is by no means set in
stone—as the previous listing illustrates, __call() makes it possible to completely
customize how a class responds to calls for nonexistent methods.

NOTE

PHP also supports property overloading with the __set() and __get() methods, which
are triggered on requests to set and get nonexistent class properties. Read more about this at
http://www.php.net/oop5.overloading.

 1 8 2 P H P P r o g r a m m i n g S o l u t i o n s

5.26 Auto-Generating Class API Documentation

Problem
You want to automatically generate API class documentation from code comments.

Solution
Use phpDocumentor-style comments to mark up your code, and then use the
phpDocumentor engine to parse the comments and generate documentation from
them:

<?php

/**

 * generic Pet class

 *

 * @package Animals

 * @access public

 * @copyright GPL

 * @version 1.1

 * @author K-9

 * @todo add run() and walk() methods

 * @todo add default values for all properties

 */

class Pet {

 /**

 * pet's name

 *

 * @access private

 * @var string

 */

 private $name;

 /**

 * sets pet's name

 *

 * @access public

 * @param string $name input value

 * @version 1.0

 C h a p t e r 5 : W o r k i n g w i t h F u n c t i o n s a n d C l a s s e s 1 8 3

 */

 public function setName($name) {

 $this->name = $name;

 return true;

 }

 /**

 * makes pet sleep

 *

 * @access public

 * @return string $sleepStr snoring sounds

 * @see wake()

 * @version 2.3

 */

 public function sleep() {

 $sleepStr = "Zz zzz zz\n";

 return $sleepStr;

 }

}

?>

Comments
If you’re like most developers, you probably hate the thought of writing formal API
documentation for your code. Fortunately, there is a solution—with the addition of
a few simple tags to your code (which you can add as code comments during the
development process), you can automate the generation of API documentation.

This is accomplished with the help of phpDocumentor (http://www.phpdoc
.org/), an auto-documentation tool that uses special comment tags embedded
within program code to create and cross-reference API documents. As the previous
example illustrates, these comment tags provide information on a diverse range of
items: method arguments and return values, property data types and descriptions,
copyright and version information, to-do items, author information, and links to
reference sources.

Once the code has been marked up, the phpDocumentor application reads the
comment tags and generates API documentation from the information found in them.
phpDocumentor can also detect extended classes and generate cross-referenced
class trees depicting parent-child relationships. For more information and a detailed
tutorial, visit http://www.phpdoc.org/.

This page intentionally left blank

185

CHAPTER

6
Working with Files

and Directories
IN THIS CHAPTER:
 6.1 Testing Files and Directories
 6.2 Retrieving File Information
 6.3 Reading Files
 6.4 Reading Line Ranges from a File
 6.5 Reading Byte Ranges from a File
 6.6 Counting Lines, Words, and Characters in a File
 6.7 Writing Files
 6.8 Locking and Unlocking Files
 6.9 Removing Lines from a File
6.10 Processing Directories
6.11 Recursively Processing Directories
6.12 Printing Directory Trees
6.13 Copying Files
6.14 Copying Remote Files
6.15 Copying Directories
6.16 Deleting Files
6.17 Deleting Directories
6.18 Renaming Files and Directories

6.19 Sorting Files
6.20 Searching for Files in a Directory
6.21 Searching for Files in PHP’s Default

Search Path
6.22 Searching and Replacing Patterns

Within Files
6.23 Altering File Extensions
6.24 Finding Differences Between Files
6.25 “Tailing” Files
6.26 Listing Available Drives

or Mounted File Systems
6.27 Calculating Disk Usage
6.28 Creating Temporary Files
6.29 Finding the System Temporary Directory
6.30 Converting Between Relative

and Absolute File Paths
6.31 Parsing File Paths

 1 8 6 P H P P r o g r a m m i n g S o l u t i o n s

You’ve probably used PHP many times to read data from, and write data
to, files on the system. But that’s just the tip of the iceberg—PHP’s file
manipulation API is powerful and full-featured enough to perform almost

any file manipulation task, from deleting directories to counting the number of
characters in a file.

These two tasks, along with many others, form the subject matter of this chapter,
which takes you on a tour of PHP’s file API and delivers solutions to common file
system interaction problems. Solutions are included for tasks such as viewing file
attributes; copying, renaming and deleting files; searching and replacing patterns
within files; comparing files; extracting specific lines or bytes from files; recursively
processing directories; converting files between UNIX and MS-DOS formats; and
calculating disk usage. Enjoy!

6.1 Testing Files and Directories

Problem
You want to check if a particular file (or directory) exists on the file system.

Solution
Use PHP’s file_exists() function:

<?php

// check to see if file exists

// result: "File exists"

echo file_exists('dummy.txt') ? "File exists" : "File does not exist";

?>

Comments
Before performing any operation on a file (or directory), especially when the
file path and name come through user input, it’s a good idea to see if that file (or
directory) actually exists on the file system. Attempting to move, copy, or read a file
that doesn’t exist is a quick way to make PHP barf warnings all over your screen.

The solution to the problem is the file_exists() function, which accepts a file
path and name as an argument and returns a Boolean value indicating whether or not
that path and name is valid.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 1 8 7

6.2 Retrieving File Information

Problem
You want to obtain detailed information about a particular file, such as its size or type.

Solution
Use one or more of PHP’s numerous file information functions, such as stat(),
filesize(), or filetype():

<?php

// set the file name

$file = "dummy.txt";

// get file statistics

$info = stat($file);

print_r($info);

// get file type

$type = filetype($file);

echo "File type is $type\n";

// get file size

$size = filesize($file);

echo "File size is $size bytes\n";

// is file readable?

echo is_readable($file) ? "File is readable\n" : ↵
"File is not readable\n";

// is file writable?

echo is_writable($file) ? "File is writable\n" : ↵
"File is not writable\n";

// is file executable?

echo is_executable($file) ? "File is executable\n" : ↵
"File is not executable\n";

?>

 1 8 8 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP comes with a number of different functions to obtain detailed information on
file attributes such as size, type, owner, permissions, and creation/modification
times. The stat() function retrieves file statistics such as the owner and group
ID, the file system block size, the device and inode number, and the file’s creation,
access, and modification times. The filesize() function returns the size of the
file in bytes; the filetype() function returns the type of the file (whether file,
directory, link, device, or pipe); and the is_readable(), is_writable(), and
is_executable() functions return Boolean values indicating the current status of
the file.

TIP

If PHP’s file functions don’t appear to be working as advertised, try using the absolute file path to
get to the file, instead of a relative path.

NOTE

Some of the information returned by the stat() and filetype() functions, such as
inode numbers and UNIX permission bits, may not be relevant to the Windows version of PHP.

NOTE

The results of a call to stat() are cached. You should use the clearstatcache()
function to reset the cache before your next stat() call to ensure that you always get the most
recent file information.

6.3 Reading Files

Problem
You want to read the contents of a local or remote file into a string or an array.

Solution
Use PHP’s file_get_contents() or file() function:

<?php

// set the file name

$file = "dummy.txt";

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 1 8 9

// read file contents into an array

$dataArr = file($file);

print_r($dataArr);

// read file contents into a string

$dataStr = file_get_contents($file);

echo $dataStr;

?>

Comments
The file_get_contents() function is a fast and efficient way to read an entire
file into a single string variable, whereupon it can be further processed. The file()
function is similar, except that it reads a file into an array, with each line of the file
corresponding to an element of the array.

If you’re using an older PHP build that lacks the file_get_contents()
function, you can instead use the fread() function to read a file into a string.
Here’s how:

<?php

// define file to read

$file = "dummy.txt";

// open file

$fp = fopen($file, "rb") or die ("Cannot open file");

// read file contents into string

$dataStr = fread($fp, filesize($file));

echo $dataStr;

// close file

fclose($fp) or die("Cannot close file");

?>

NOTE

In case you were wondering, the options passed to fopen() in the previous listing are used to
open the file in read-only mode ("r") and binary mode ("b").

If you’re trying to read a file over a network link, it may not always be a good
idea to slurp up a file in a single chunk due to network bandwidth considerations.
In such situations, the recommended way to read a file is in “chunks” with the

 1 9 0 P H P P r o g r a m m i n g S o l u t i o n s

fgets() function, and then combine the chunks to create a complete string. Here’s
an illustration:

<?php

// open file

$fp = fopen("/mnt/net/machine2/hda1/dummy.txt", "rb")↵
or die ("Cannot open file");

// read contents into a string

while (!feof($fp)) {

 $dataStr .= fgets($fp, 1024);

}

// close file

fclose($fp) or die ("Cannot close file");

// display contents

echo $dataStr;

?>

6.4 Reading Line Ranges from a File

Problem
You want to read a particular line or line range from a file.

Solution
Read the file into an array with PHP’s file() function, and then extract the
required lines:

<?php

// read file into array

$data = file('fortunes.txt') or die("Cannot read file");

// get first line

echo $data[0] . "\n";

// get last line

echo end($data) . "\n";

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 1 9 1

// get line 5

echo $data[4] . "\n";

// get lines 2-6

$lines = array_slice($data, 1, 5);

echo implode("\n", $lines);

?>

Write a custom function that uses the fgets() and fseek() calls to pick one or
more lines out of a file:

<?php

// function to get an arbitrary range of lines

// from a file

function getLines($file, $startLineNum, $endLineNum) {

 // check for valid range endpoints

 if ($endLineNum < $startLineNum) {

 die("Ending line number must be greater than or ↵
equal to starting line number!");

 }

 // initialize line counter

 $lineCounter = 0;

 // open the file for reading

 $fp = fopen($file, "rb") or die("Cannot open file");

 // read contents line by line

 while (!feof($fp) && $lineCounter <= $endLineNum) {

 // once the starting line number is attained

 // save contents to an array

 // until the ending line number is attained

 $lineCounter++;

 $line = fgets($fp);

 if ($lineCounter >= $startLineNum && $lineCounter <= ↵
$endLineNum) {

 $lineData[] = $line;

 }

 }

 // close the file

 fclose($fp) or die ("Cannot close file");

 1 9 2 P H P P r o g r a m m i n g S o l u t i o n s

 // return line range to caller

 return $lineData;

}

// return lines 2-6 of file as array

$lines = getLines("fortunes.txt", 2, 6);

print_r($lines);

?>

Comments
Extracting one or more lines from a file is one of the more common problems
developers face, and it’s no surprise that there are so many creative solutions to it.
The first listing outlines the simplest approach, storing the lines of a file in an array
with PHP’s file() function and then using array indexing to extract specific lines
by number.

The second listing offers a more complicated approach, wherein a custom
getLines() function accepts three arguments: a file path, a starting line number,
and an ending line number (for a single line, the latter two will be equal). It then
iterates through the named file, incrementing a counter as each line is processed.
Lines that fall within the supplied range will be saved to an array, which is returned
to the caller once the entire file is processed.

You can also get the first and last lines of a file with a combination of fseek()
and fgets() function calls, as illustrated here:

<?php

// open file

$fp = fopen('fortunes.txt', "rb") or die("Cannot open file");

// get first line

fseek($fp, 0, SEEK_SET);

echo fgets($fp);

// get last line

fseek($fp, 0, SEEK_SET);

while (!feof($fp)) {

 $line = fgets($fp);

}

echo $line;

// close file

fclose($fp) or die ("Cannot close file");

?>

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 1 9 3

Here, the fseek() function moves the internal file pointer to a specific location
in the file, and the fgets() function retrieves all the data beginning from the
pointer location until the next newline character. To obtain the first line, set the file
pointer to position 0 and call fgets() once; to obtain the last line, keep calling
fgets() until the end of the file is reached and the last return value will represent
the last line.

You should also take a look at the listing in “6.5: Reading Byte Ranges from
a File” for a variant that extracts file contents by bytes instead of lines.

6.5 Reading Byte Ranges from a File

Problem
You want to read a particular byte or byte range from a file.

Solution
Write a custom function encapsulating a combination of fseek(), ftell(), and
fgetc() calls:

<?php

// function to get an arbitrary number of bytes

// from a file

function getBytes($file, $startByte, $endByte) {

 // check for valid range endpoints

 if ($endByte < $startByte) {

 die("Ending byte number must be greater than or ↵
equal to starting byte number!");

 }

 // open the file for reading

 $fp = fopen($file, "rb") or die("Cannot open file");

 // seek to starting byte

 // retrieve data by character

 // until ending byte

 fseek ($fp, $startByte, SEEK_SET);

 while (!(ftell($fp) > $endByte)) {

 $data .= fgetc($fp);

 }

 1 9 4 P H P P r o g r a m m i n g S o l u t i o n s

 // close the file

 fclose($fp) or die ("Cannot close file");

 // return data to caller

 return $data;

}

// return first 10 bytes of file

echo getBytes("fortunes.txt", 0, 9);

?>

Comments
The user-defined getBytes() function is similar to the getLines() function
illustrated in the first listing in “6.4: Reading Line Ranges from a File,” with the
primary difference lying in its use of fgetc() instead of fgets().The function
accepts three arguments: a file path, a starting byte number, and an ending byte
number. It then sets the internal file pointer to the starting byte value and loops over
the file character by character, appending the result at each stage to a variable, until
the ending byte value is reached. The variable containing the saved bytes is then
returned to the caller as a string.

6.6 Counting Lines, Words,
and Characters in a File

Problem
You want to count the number of lines, words, and characters in a file.

Solution
Use PHP’s file_get_contents(), strlen(), and str_word_count()
functions to count words and characters in a file:

<?php

// set file name and path

$file = "dummy.txt";

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 1 9 5

// read file contents into string

$str = file_get_contents($file) or die ("Cannot read from file");

// read file contents into array

$arr = file ($file) or die ("Cannot read from file");

// count lines

echo "Counted ". sizeof($arr) . " line(s).\n";

// count characters, with spaces

$numCharsSpaces = strlen($str);

echo "Counted $numCharsSpaces character(s) with spaces.\n";

// count characters, without spaces

$newStr = ereg_replace('[[:space:]]+', '', $str);

$numChars = strlen($newStr);

echo "Counted $numChars character(s) without spaces.\n";

// count words

$numWords = str_word_count($str);

echo "Counted $numWords words.\n";

?>

Comments
It’s fairly easy to count the number of lines in a file—simply read the file into
an array with file(), which stores each line as an individual array element, and
then count the total number of elements in the array.

Counting words and characters is a little more involved, and requires you to first
read the file into a string with a function such as file_get_contents(). The
number of words and characters (including spaces) can then be obtained by running
the str_word_count() and strlen() functions on the string.

To obtain the number of characters excluding spaces, simple remove all spaces
from the string with ereg_replace() and then obtain the size of the string with
strlen(). You can read more about how this works in the listing in “1.4: Removing
Whitespace from Strings,” and users whose PHP builds don’t support the relatively-
newer str_word_count() function will find an alternative way of counting words
in the listing in “1.13: Counting Words in a String.”

 1 9 6 P H P P r o g r a m m i n g S o l u t i o n s

6.7 Writing Files

Problem
You want to write a string to a file.

Solution
Use the file_put_contents() function:

<?php

// define string to write

$data = "All the world's a stage\r\nAnd all the men and ↵
women merely players";

// write string to file

file_put_contents('shakespeare.txt', $data) or die("Cannot write to ↵
file"); echo "File successfully written.";

?>

Comments
The file_put_contents() function provides an easy way to write data to a file.
The file will be created if it does not already exist, and overwritten if it does. The
return value of the function is the number of bytes written.

TIP

To have file_put_contents() append to an existing file rather than overwrite it
completely, add the optional FILE_APPEND flag to the function call as its third argument.

If you’re using an older PHP build that lacks the file_put_contents()
function, you can use the fwrite() function to write to a file instead. Here’s how:

<?php

// define string to write

$data = "All the world's a stage\r\nAnd all the men and ↵
women merely players";

// open file

$fp = fopen('shakespeare.txt', "wb+") or die ("Cannot open file");

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 1 9 7

// lock file

// write string to file

if (flock($fp, LOCK_EX)) {

 fwrite($fp, $data) or die("Cannot write to file");

 flock($fp, LOCK_UN);

 echo "File successfully written.";

} else {

 die ("Cannot lock file");

}

// close file

fclose($fp) or die ("Cannot close file");

?>

Here, the fwrite() function is used to write a string to an open file pointer, after
the file has been opened for writing with fopen() and the w+ parameter. Notice
the call to flock() before any data is written to the file—this locks the file, stops
other processes from writing to the file, and thereby reduces the possibility of data
corruption. Once the data has been successfully written, the file is unlocked. Locking
is discussed in greater detail in the listing in “6.8: Locking and Unlocking Files.”

TIP

To have fwrite() append to an existing file, rather than overwrite it completely, change the
file mode to ab+ in the fopen() call.

NOTE

The flock() function is not supported on certain file systems, such as the File Allocation
Table (FAT) system and the Network File System (NFS). For an alternative file-locking solution for
these file systems, look at the listing in “6.8: Locking and Unlocking Files,” and read more about
flock() caveats at http://www.php.net/flock.

6.8 Locking and Unlocking Files

Problem
You want to lock a file before writing to it.

 1 9 8 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use the flock() function:

<?php

// open file

$fp = fopen('dummy.txt', "wb+") or die ("Cannot open file");

// lock file

// write string to file

if (flock($fp, LOCK_EX)) {

 fwrite($fp, "This is a test.") or die("Cannot write to file");

 flock($fp, LOCK_UN);

} else {

 die ("Cannot lock file");

}

// close file

fclose($fp) or die ("Cannot close file");

echo "File successfully written.";

?>

Comments
PHP implements both shared and exclusive file locks through its flock() function,
which accepts a file pointer and a flag indicating the lock type (LOCK_EX for
exclusive lock, LOCK_SH for shared lock, and LOCK_UN for unlock). Once a file is
locked with flock(), other processes attempting to write to the file have to wait
until the lock is released; this reduces the possibility of multiple processes trying to
write to the same file simultaneously and corrupting it.

NOTE

PHP’s file locking is advisory, which means that it only works if all processes attempting to access
the file respect PHP’s locks. This may not always be true in the real world—just because a file is
locked with PHP flock() doesn’t mean that it can’t be modified with an external text editor
like vi—so it’s important to always try and ensure that the processes accessing a file use the
same type of locking and respect each other’s locks.
 So long as your file is only written to by a PHP process, flock() will usually suffice; if,
however, your file is accessed by multiple processes, or scripts in different languages, it might be
worth your time to create a customized locking system that can be understood and used by all
accessing programs. The listing in this section contains some ideas to get you started.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 1 9 9

On certain file systems, the flock() function remains unsupported and will
always return false. Users of older Windows versions are particularly prone to this
problem, as flock() does not work with the FAT file system. If file locking is still
desired on such systems, it becomes necessary to simulate it by means of a user-
defined lock/unlock API. The following listing illustrates this:

<?php

// function to set lock for file

function lock($file) {

 return touch("$file.lock");

}

// function to remove lock for file

function unlock($file) {

 return unlink ("$file.lock");

}

// function to check if lock exists

function isLocked($file) {

 clearstatcache();

 return file_exists("$file.lock") ? true : false;

}

// set file name

$file = "dummy.txt";

while ($attemptCount <= 60) {

 // if file is not in use

 if (!isLocked($file)) {

 // lock file

 lock($file);

 // perform actions

 $fp = fopen($file, "ab") or die("Cannot open file");

 fwrite($fp, "This is a test.") or die("Cannot write to file");

 fclose($fp) or die("Cannot close file");

 // unlock file

 unlock($file);

 echo "File successfully written.";

 2 0 0 P H P P r o g r a m m i n g S o l u t i o n s

 // break out of loop

 break;

 } else {

 // if file is in use

 // increment attempt counter

 $attemptCount++;

 // sleep for one second

 sleep(1);

 // try again

 }

}

?>

This simple locking API contains three functions: one to lock a file, one to
unlock it, and one to check the status of the lock. A lock is signaled by the presence
of a lock file, which serves as a semaphore; this file is removed when the lock is
released.

The PHP script first checks to see if a lock exists on the file, by looking for the
lock file. If no lock exists, the script obtains a lock and proceeds to make changes
to the file, unlocking it when it’s done. If a lock exists, the script waits one second
and then checks again to see if the previous lock has been released. This check is
performed 60 times, once every second; at the end of it, if the lock has still not been
released, the script gives up and exits.

NOTE

If flock() is not supported on your file system, or if you’re looking for a locking mechanism
that can be used by both PHP and non-PHP scripts, the previous listing provides a basic framework
to get started. Because the lock is implemented as a file on the system and all programming
languages come with functions to test files, it is fairly easy to port the API to other languages and
create a locking system that is understood by all processes.

6.9 Removing Lines from a File

Problem
You want to remove a line from a file, given its line number.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 0 1

Solution
Use PHP’s file() function to read the file into an array, remove the line, and then
write the file back with the file_put_contents() function:

<?php

// set the file name

$file = "fortunes.txt";

// read file into array

$data = file($file) or die("Cannot read file");

// remove third line

unset ($data[2]);

// re-index array

$data = array_values($data);

// write data back to file

file_put_contents($file, implode($data)) or die("Cannot write to file");

echo "File successfully written.";

?>

Comments
The simplest way to erase a line from a file is to read the file into an array, remove
the offending element, and then write the array back to the file, overwriting its
original contents. An important step in this process is the re-indexing of the array
once an element has been removed from it—omit this step and your output file will
display a blank line at the point of surgery.

If your PHP build doesn’t support the file_put_contents() function, you
can accomplish the same result with a combination of fgets() and fwrite().
Here’s how:

<?php

// set the file name

$file = "fortunes.txt";

// set line number to remove

$lineNum = 3;

 2 0 2 P H P P r o g r a m m i n g S o l u t i o n s

// open the file for reading

$fp = fopen($file, "rb") or die("Cannot open file");

// read contents line by line

// skip over the line to be removed

while (!feof($fp)) {

 $lineCounter++;

 $line = fgets($fp);

 if ($lineCounter != $lineNum) {

 $data .= $line;

 }

}

// close the file

fclose($fp) or die ("Cannot close file");

// open the file again for writing

$fp = fopen($file, "rb+") or die("Cannot open file");

// lock file

// write data to it

if (flock($fp, LOCK_EX)) {

 fwrite($fp, $data) or die("Cannot write to file");

 flock($fp, LOCK_UN);

} else {

 die ("Cannot lock file for writing");

}

// close the file

fclose($fp) or die ("Cannot close file");

echo "File successfully written.";

?>

The fgets() function reads the file line by line, appending whatever it finds to
a string. A line counter keeps track of the lines being processed, and takes care of
skipping over the line to be removed so that it never makes it into the data string.
Once the file has been completely processed and its contents have been stored in the
string (with the exception of the line to be removed), the file is closed and reopened
for writing. A lock secures access to the file, and the fwrite() function then writes
the string back to the file, erasing the original contents in the process.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 0 3

6.10 Processing Directories

Problem
You want to iteratively process all the files in a directory.

Solution
Use PHP’s scandir() function:

<?php

// define directory path

$dir = './test';

// get directory contents as an array

$fileList = scandir($dir) or die ("Not a directory");

// print file names and sizes

foreach ($fileList as $file) {

 if (is_file("$dir/$file") && $file != '.' && $file != '..') {

 echo "$file: " . filesize("$dir/$file") . "\n";

 }

}

?>

Comments
PHP’s scandir() function offers a simple solution to this problem—it returns
the contents of a directory as an array, which can then be processed using any loop
construct or array function.

An alternative approach is to use the Iterators available as part of the Standard
PHP Library (SPL). Iterators are ready-made, extensible constructs designed
specifically to loop over item collections, such as arrays and directories. To process
a directory, use a DirectoryIterator, as illustrated here:

<?php

// define directory path

$dir = './test';

// create a DirectoryIterator object

$iterator = new DirectoryIterator($dir);

 2 0 4 P H P P r o g r a m m i n g S o l u t i o n s

// rewind to beginning of directory

$iterator->rewind();

// iterate over the directory using object methods

// print each file name

while($iterator->valid()) {

if ($iterator->isFile() && !$iterator->isDot()) {

 print $iterator->getFilename() . ": " .↵
$iterator->getSize() . "\n";

 }

 $iterator->next();

}

?>

Here, a DirectoryIterator object is initialized with a directory name, and the
object’s rewind() method is used to reset the internal pointer to the first entry in
the directory. You can then use a while() loop, which runs so long as a valid()
entry exists, to iterate over the directory. Individual file names are retrieved with the
getFilename() method, while you can use the isDot() method to filter out the
entries for the current (.) and parent (..) directories. The next() method moves
the internal pointer forward to the next entry.

You can read more about the DirectoryIterator at http://www.php.net/
~helly/php/ext/spl/.

6.11 Recursively Processing Directories

Problem
You want to process all the files in a directory and its subdirectories.

Solution
Write a recursive function to process the directory and its children:

<?php

// function to recursively process

// a directory and all its subdirectories

function dirTraverse($dir) {

 // check if argument is a valid directory

 if (!is_dir($dir)) { die("Argument '$dir' is not a directory!"); }

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 0 5

 // declare variable to hold file list

 global $fileList;

 // open directory handle

 $dh = opendir($dir) or die ("Cannot open directory '$dir'!");

 // iterate over files in directory

 while (($file = readdir($dh)) !== false) {

 // filter out "." and ".."

 if ($file != "." && $file != "..") {

 if (is_dir("$dir/$file")) {

 // if this is a subdirectory

 // recursively process it

 dirTraverse("$dir/$file");

 } else {

 // if this is a file

 // do something with it

 // for example, reverse file name/path and add to array

 $fileList[] = strrev("$dir/$file");

 }

 }

 }

 // return the final list to the caller

 return $fileList;

}

// recursively process a directory

$result = dirTraverse('./test');

print_r($result);

?>

Comments
As illustrated in the listing in “6.10: Processing Directories,” it’s fairly easy to
process the contents of a single directory with the scandir() function. Dealing
with a series of nested directories is somewhat more complex. The previous listing
illustrates the standard technique, a recursive function that calls itself to travel ever
deeper into the directory tree.

The inner workings of the dirTraverse() function are fairly simple. Every
time the function encounters a directory entry, it checks to see if that value is a file or
a directory. If it’s a directory, the function calls itself and repeats the process until it
reaches the end of the directory tree. If it’s a file, the file is processed—the previous

 2 0 6 P H P P r o g r a m m i n g S o l u t i o n s

listing simply reverses the file name and adds it to an array, but you can obviously
replace this with your own custom routine—and then the entire performance is
repeated for the next entry.

Another option is to use the Iterators available as part of the Standard PHP
Library (SPL). Iterators are ready-made, extensible constructs designed specifically
to loop over item collections such as arrays and directories. A predefined Recursive
DirectoryIterator already exists and it’s not difficult to use this for recursive directory
processing. Here’s how:

<?php

// initialize an object

// pass it the directory to be processed

$iterator = new RecursiveIteratorIterator(new ↵
 RecursiveDirectoryIterator('./test'));

// iterate over the directory

foreach ($iterator as $key=>$value) {

 print strrev($key) . "\n";

}

?>

The process of traversing a series of nested directories is significantly simpler
with the SPL at hand. First, initialize a RecursiveDirectoryIterator object and pass it
the path to the top-level directory to be processed. Next, initialize a RecursiveIterat
orIterator object (this is an Iterator designed solely for the purpose of iterating over
other recursive Iterators) and pass it the newly minted RecursiveDirectoryIterator.
You can now process the results with a foreach() loop.

You can read more about the RecursiveDirectoryIterator and the RecursiveIterator
Iterator at http://www.php.net/~helly/php/ext/spl/.

For more examples of recursively processing a directory tree, see the listings in
“6.11: Recursively Processing Directories,” “6.15: Copying Directories,” n “6.17:
Deleting Directories,” and “6.20: Searching for Files in a Directory.” You can also read
about recursively processing arrays in the listing in “4.3: Processing Nested Arrays.”

6.12 Printing Directory Trees

Problem
You want to print a hierarchical listing of a directory and its contents.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 0 7

Solution
Write a recursive function to traverse the directory and print its contents:

<pre>

<?php

// function to recursively process

// a directory and all its subdirectories

// and print a hierarchical list

function printTree($dir, $depth=0) {

 // check if argument is a valid directory

 if (!is_dir($dir)) { die("Argument is not a directory!"); }

 // open directory handle

 $dh = opendir($dir) or die ("Cannot open directory");

 // iterate over files in directory

 while (($file = readdir($dh)) !== false) {

 // filter out "." and ".."

 if ($file != "." && $file != "..") {

 if (is_dir("$dir/$file")) {

 // if this is a subdirectory (branch)

 // print it and go deeper

 echo str_repeat(" ", $depth) . " [$file]\n";

 printTree("$dir/$file", ($depth+1));

 } else {

 // if this is a file (leaf)

 // print it

 echo str_repeat(" ", $depth) . " $file\n";

 }

 }

 }

}

// recursively process and print directory tree

printTree('./test/');

?>

</pre>

Comments
This listing is actually a variant of the technique outlined in the listing in “6.11:
Recursively Processing Directories.” Here, a recursive function travels through the

 2 0 8 P H P P r o g r a m m i n g S o l u t i o n s

named directory and its children, printing the name of every element found. A depth
counter is incremented every time the function enters a subdirectory; the str_
repeat() function uses this depth counter to pad the listing with spaces and thus
simulate a hierarchical tree.

For more examples of recursively processing a directory tree, see the listings in
“6.15: Copying Directories” and “6.17: Deleting Directories.”

6.13 Copying Files

Problem
You want to copy a file from one location to another.

Solution
Use PHP’s copy() function:

<?php

// set file name

$source = "dummy.txt";

$destination = "dummy.txt.backup";

// copy file if it exists, else exit

if (file_exists($source)) {

 copy ($source, $destination) or die ("Cannot copy file '$source'");

 echo "File successfully copied.";

} else {

 die ("Cannot find file '$source'");

}

?>

Comments
In PHP, creating a copy of a file is as simple as calling the copy() function and
passing it the source and destination file names and paths. The function returns true
if the file is successfully copied.

If what you really want is to create a copy of a directory, visit the listing in “6.15:
Copying Directories.”

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 0 9

NOTE

If the destination file already exists, it will be overwritten with no warning by copy(). If this is
not what you want, implement an additional check for the target file with file_exists()
and exit with a warning if the file already exists.

6.14 Copying Remote Files

Problem
You want to create a local copy of a file located on a remote server.

Solution
Use PHP’s file_get_contents() and file_put_contents() functions to
read a remote file and write the retrieved data to a local file:

<?php

// increase script execution time limit

ini_set('max_execution_time', 600);

// set URL of file to be downloaded

$remoteFile = "http://www.some.domain/remote.file.tgz";

// set name of local copy

$localFile = "local.file.tgz";

// read remote file

$data = file_get_contents($remoteFile) or ↵
die("Cannot read from remote file");

// write data to local file

file_put_contents($localFile, $data) or ↵
die("Cannot write to local file");

// display success message

echo "File [$remoteFile] successfully copied to [$localFile]";

?>

 2 1 0 P H P P r o g r a m m i n g S o l u t i o n s

Comments
Most of PHP’s file functions support reading from remote files. In this listing,
this capability is exploited to its fullest to create a local copy of a remote file.
The file_get_contents() function reads the contents of a remote file into a
string, and the file_put_contents() function then writes this data to a local file,
thereby creating an exact copy. Both functions are binary-safe, so this technique can
be safely used to copy both binary and non-binary files.

6.15 Copying Directories

Problem
You want to copy a directory and all its contents, including subdirectories.

Solution
Write a recursive function to travel through a directory, copying files as it goes:

<?php

// function to recursively copy

// a directory and its subdirectories

function copyRecursive($source, $destination) {

 // check if source exists

 if (!file_exists($source)) { die("'$source' is not valid"); }

 if (!is_dir($destination)) {

 mkdir ($destination);

 }

 // open directory handle

 $dh = opendir($source) or die ("Cannot open directory '$source'");

 // iterate over files in directory

 while (($file = readdir($dh)) !== false) {

 // filter out "." and ".."

 if ($file != "." && $file != "..") {

 if (is_dir("$source/$file")) {

 // if this is a subdirectory

 // recursively copy it

 copyRecursive("$source/$file", "$destination/$file");

 } else {

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 1 1

 // if this is a file

 // copy it

 copy ("$source/$file", "$destination/$file")↵
or die ("Cannot copy file '$file'");

 }

 }

 }

 // close directory

 closedir($dh);

}

// copy directory recursively

copyRecursive("www/template", "www/site12");

echo "Directories successfully copied.";

?>

Comments
This listing is actually a combination of techniques discussed in the listings in “6.11:
Recursively Processing Directories” and “6.13: Copying Files.” Here, the custom
copyRecursive() function iterates over the source directory and, depending
on whether it finds a file or directory, copies it to the target directory or invokes
itself recursively. The recursion ends when no further subdirectories are left to be
traversed. Note that if the target directory does not exist at any stage, it is created
with the mkdir() function.

6.16 Deleting Files

Problem
You want to delete a file.

Solution
Use PHP’s unlink() function:

<?php

// set file name

$file = "shakespeare.asc";

 2 1 2 P H P P r o g r a m m i n g S o l u t i o n s

// check if file exists

// if it does, delete it

if (file_exists($file)) {

 unlink ($file) or die("Cannot delete file '$file'");

 echo "File successfully deleted.";

} else {

 die ("Cannot find file '$file'");

}

?>

Comments
To delete a file with PHP, simply call the unlink() function with the file name and
path. The function returns true if the file was successfully deleted.

NOTE

Typically, PHP will not be able to delete files owned by other users; the PHP process can only delete
files owned by the user it’s running as. This is a common cause of errors, so keep an eye out for it!

6.17 Deleting Directories

Problem
You want to delete a directory and its contents, including subdirectories.

Solution
Write a recursive function to travel through a directory and its children, deleting files
as it goes:

<?php

// function to recursively delete

// a directory and its subdirectories

function deleteRecursive($dir) {

 // check if argument is a valid directory

 if (!is_dir($dir)) { die("'$dir' is not a valid directory"); }

 // open directory handle

 $dh = opendir($dir) or die ("Cannot open directory '$dir'");

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 1 3

 // iterate over files in directory

 while (($file = readdir($dh)) !== false) {

 // filter out "." and ".."

 if ($file != "." && $file != "..") {

 if (is_dir("$dir/$file")) {

 // if this is a subdirectory

 // recursively delete it

 deleteRecursive("$dir/$file");

 } else {

 // if this is a file

 // delete it

 unlink ("$dir/$file") or die ("Cannot delete file ↵
'$file'");

 }

 }

 }

 // close directory

 closedir($dh);

 // remove top-level directory

 rmdir($dir);

}

// delete directory recursively

deleteRecursive("junk/robert/");

echo "Directories successfully deleted.";

?>

Comments
In PHP, the function to remove a directory a rmdir(). Unfortunately, this function
only works if the directory in question is empty. Therefore, to delete a directory, it
is first necessary to iterate over it and delete all the files within it. If the directory
contains subdirectories, those need to be deleted too; you do this by entering them
and erasing their contents.

The most efficient way to accomplish this task is with a recursive function such
as the one in the previous listing, which is a combination of the techniques outlined
in the listing in “6.11: Recursively Processing Directories” and the listing in “6.16:
Deleting Files.” Here, the deleteRecursive() function accepts a directory path
and name and goes to work deleting the files in it. If it encounters a directory, it
invokes itself recursively to enter that directory and clean it up. Once all the contents
of a directory are erased, you use the rmdir() function to remove it completely.

 2 1 4 P H P P r o g r a m m i n g S o l u t i o n s

6.18 Renaming Files and Directories

Problem
You want to move or rename a file or directory.

Solution
Use PHP’s rename() function:

<?php

// set old and new file/directory names

$oldFile = "home/john";

$newFile = "home/jane";

// check if file/directory exists

// if it does, move/rename it

if (file_exists($oldFile)) {

 rename ($oldFile, $newFile)↵
or die("Cannot move/rename file '$oldFile'");

 echo "Files/directories successfully renamed.";

} else {

 die ("Cannot find file '$oldFile'");

}

?>

Comments
A corollary to PHP’s copy() function, you can use the rename() function to both
rename and move files. Like copy(), rename()accepts two arguments, a source
file and a destination file, and attempts to rename the former to the latter. It returns
true on success.

6.19 Sorting Files

Problem
You want to sort a file listing.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 1 5

Solution
Save the file list to an array, and then use the array_multisort() function to sort
it by one or more attributes:

<?php

// define directory

$dir = "./test/a";

// check if it is a directory

if (!is_dir($dir)) { die("Argument '$dir' is not a directory!"); }

// open directory handle

$dh = opendir($dir) or die ("Cannot open directory '$dir'!");

// iterate over files in directory

while (($file = readdir($dh)) !== false) {

 // filter out "." and ".."

 if ($file != "." && $file != "..") {

 // add an entry to the file list for this file

 $fileList[] = array("name" => $file, "size" => ↵
filesize("$dir/$file"), "date" => filemtime("$dir/$file"));

 }

}

// close directory

closedir($dh);

// separate all the elements with the same key

// into individual arrays

foreach ($fileList as $key=>$value) {

 $name[$key] = $value['name'];

 $size[$key] = $value['size'];

 $date[$key] = $value['date'];

}

// now sort by one or more keys

// sort by name

array_multisort($name, $fileList);

print_r($fileList);

 2 1 6 P H P P r o g r a m m i n g S o l u t i o n s

// sort by date and then size

array_multisort($date, $size, $fileList);

print_r($fileList);

?>

Comments
Here, PHP’s directory functions are used to obtain a list of the files in a directory,
and place them in a two-dimensional array. This array is then processed with PHP’s
array_multisort() function, which is especially good at sorting symmetrical
multidimensional arrays.

The array_multisort() function accepts a series of input arrays and uses
them as sort criteria. Sorting begins with the first array; values in that array that
evaluate as equal are sorted by the next array, and so on. This makes it possible to
sort the file list first by size and then date, or by name and then size, or any other
permutation thereof. Once the file list has been sorted, it can be processed further
or displayed in tabular form.

6.20 Searching for Files in a Directory

Problem
You want to find all the files matching a particular name pattern, starting from a top-
level search directory.

Solution
Write a recursive function to search the directory and its children for matching file
names:

<?php

// function to recursively search

// directories for matching filenames

function searchRecursive($dir, $pattern) {

 // check if argument is a valid directory

 if (!is_dir($dir)) { die("Argument '$dir' is not a directory!"); }

 // declare array to hold matches

 global $matchList;

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 1 7

 // open directory handle

 $dh = opendir($dir) or die ("Cannot open directory '$dir'!");

 // iterate over files in directory

 while (($file = readdir($dh)) !== false) {

 // filter out "." and ".."

 if ($file != "." && $file != "..") {

 if (is_dir("$dir/$file")) {

 // if this is a subdirectory

 // recursively process it

 searchRecursive("$dir/$file", $pattern);

 } else {

 // if this is a file

 // check for a match

 // add to $matchList if found

 if (preg_match("/$pattern/", $file)) {

 $matchList[] = "$dir/$file";

 }

 }

 }

 }

 // return the final list to the caller

 return $matchList;

}

// search for file names containing "ini"

$fileList = searchRecursive("c:/windows", "ini");

print_r($fileList);

?>

Comments
This listing is actually a variant of the technique outlined in the listing in “6.11:
Recursively Processing Directories.” Here, a recursive function travels through the
named directory and its children, using the preg_match() function to check each
file name against the name pattern. Matching file names and their paths are stored in
an array, which is returned to the caller once all subdirectories have been processed.

An alternative approach here involves using the PEAR File_Find class, available
from http://pear.php.net/package/File_Find. This class exposes a
search() method, which accepts a search pattern and a directory path and performs
a recursive search in the named directory for files matching the search pattern. The
return value of the method is an array containing a list of paths to the matching files.

 2 1 8 P H P P r o g r a m m i n g S o l u t i o n s

Here’s an illustration of this class in action:

<?php

// include File_Find class

include "File/Find.php";

// search recursively for file names containing "tgz"

// returns array of paths to matching files

$fileList = File_Find::search("tgz", "/tmp");

print_r($fileList);

?>

For more examples of recursively processing a directory tree, see the listings in
“6.11: Recursively Processing Directories,” “6.15: Copying Directories,” and “6.17:
Deleting Directories.”

6.21 Searching for Files in PHP’s
Default Search Path

Problem
You want to check if a particular file exists in PHP’s default search path, and obtain
the full path to it.

Solution
Scan PHP’s include_path for the named file and, if found, obtain the full path to
it with PHP’s realpath() function:

<?php

// function to check for a file

// in the PHP include path

function searchIncludePath($file) {

 // get a list of all the directories

 // in the include path

 $searchList = explode(";", ini_get('include_path'));

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 1 9

 // iterate over the list

 // check for the file

 // return the path if found

 foreach ($searchList as $dir) {

 if (file_exists("$dir/$file")) { return realpath("$dir/$file"); }

 }

 return false;

}

// look for the file "DB.php"

$result = searchIncludePath('DB.php');

echo $result ? "File was found in $result" : "File was not found";

?>

Comments
A special PHP variable defined through the php.ini configuration file, the include_
path variable typically contains a list of directories that PHP will automatically look
in for files include-d or require-d by your script. It is similar to the Windows
$PATH variable, or the Perl @INC variable.

In this listing, the directory list stored in this variable is read into the PHP script
with the ini_get() function, and a foreach() loop is then used to iterate over the
list and check if the file exists. If the file is found, the realpath() function is used
to obtain the full file system path to the file.

6.22 Searching and Replacing
Patterns Within Files

Problem
You want to perform a search/replace operation within one or more files.

Solution
Use PEAR’s File_SearchReplace class:

<?php

// include File_SearchReplace class

include "File/SearchReplace.php";

 2 2 0 P H P P r o g r a m m i n g S o l u t i o n s

// initialize object

$fsr = new File_SearchReplace('PHP',↵
'PHP: Hypertext Pre-Processor', array('chapter_01.txt', ↵
'chapter_02.txt'));

// perform the search

// write the changes to the file(s)

$fsr->doReplace();

// get the number of matches

echo $fsr->getNumOccurences() . " match(es) found.";

?>

Comments
To perform search-and-replace operations with one or more files, you’ll need
the PEAR File_SearchReplace class, available from http://pear.php.net/
package/File_SearchReplace. Using this class, it’s easy to replace patterns
inside one or more files.

The object constructor requires three arguments: the search term, the replacement
text, and an array of files to search in. The search/replace operation is performed
with the doReplace() method, which scans each of the named files for the search
term and replaces matches with the replacement text. The total number of matches
can always be obtained with the getNumOccurences() method.

TIP

You can use regular expressions for the search term, and specify an array of directories (instead of
files) as an optional fourth argument to the object constructor. It’s also possible to control whether
the search function should comply with Perl or PHP regular expression matching norms. More
information on how to accomplish these tasks can be obtained from the class documentation and
source code.

6.23 Altering File Extensions

Problem
You want to change all or some of the file extensions in a directory.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 2 1

Solution
Use PHP’s glob() and rename() functions:

<?php

// define directory path

$dir = './test';

// define old and new extensions

$newExt = "asc";

$oldExt = "txt";

// search for files matching pattern

foreach (glob("$dir/*.$oldExt") as $file) {

 $count++;

 // extract the file name (without the extension)

 $name = substr($file, 0, strrpos($file, "."));

 // rename the file using the name and new extension

 rename ($file, "$name.$newExt") ↵
or die ("Cannot rename file '$file'!");

}

echo "$count file(s) renamed.";

?>

Comments
PHP’s glob() function builds a list of files matching a particular pattern, and
returns an array with this information. It’s then a simple matter to iterate over this
array, extract the filename component with substr(), and rename the file with the
new extension.

6.24 Finding Differences Between Files

Problem
You want to perform a UNIX diff on two files.

 2 2 2 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PEAR’s Text_Diff class:

<pre>

<?php

// include Text_Diff class

include "Text/Diff.php";

include "Text/Diff/Renderer.php";

include "Text/Diff/Renderer/unified.php";

// define files to compare

$file1 = "rhyme1.txt";

$file2 = "rhyme2.txt";

// compare files

$diff = &new Text_Diff(file($file1), file($file2));

// initialize renderer and display diff

$renderer = &new Text_Diff_Renderer_unified();

echo $renderer->render($diff);

?>

</pre>

Comments
The UNIX diff program is a wonderful way of quickly identifying differences
between two strings. PEAR’s Text_Diff class, available from http://pear.php
.net/package/Text_Diff, brings this capability to PHP, making it possible to
easily compare two strings and returning the difference in standard diff format.

The input arguments to the Text_Diff object constructor must be two arrays of
string values. Typically, these arrays contain the lines of the files to be compared,
and are obtained with the file() function. The Text_Diff_Renderer class takes care
of displaying the comparison in UNIX diff format, via the render() method of
the object.

As an illustration, here’s some sample output from this listing:

@@ -1,2 +1,3 @@

 They all ran after the farmer's wife,

-Who cut off their tales with a carving knife.

+Who cut off their tails with a carving knife,

+Did you ever see such a thing in your life?

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 2 3

6.25 “Tailing” Files

Problem
You want to “tail” a file, or watch it update in real time, on a Web page.

Solution
Display the output of the UNIX tail program on an auto-refreshing Web page:

<html>

<head>

<meta http-equiv="refresh" content="5;url=<?=$_SERVER['PHP_SELF']?>">

</head>

<body>

<pre>

<?php

// set name of log file

$file = "/tmp/rootproc.log";

// set number of lines to tail

$limit = 10;

// run the UNIX "tail" command and display the output

system("/usr/bin/tail -$limit $file");

?>

</pre>

</body>

</html>

Comments
UNIX administrators commonly use the tail program to watch log files update in
real time. A common requirement in Web applications, especially those that interact
with system processes, is to have this real-time update capability available within the
application itself.

The simplest—though not necessarily most elegant—way to do this is to use
PHP’s system() function to fork an external tail process and display its output on
a Web page. A <meta http-equiv="refresh" ... /> tag at the top of the
page causes it to refresh itself every few seconds, thereby producing an almost
real-time update.

 2 2 4 P H P P r o g r a m m i n g S o l u t i o n s

NOTE

Forking an external process from PHP is necessarily a resource-intensive process. To avoid
excessive usage of system resources, tune the page refresh interval in this listing to correctly
balance the requirements of real-time monitoring and system resource usage.

6.26 Listing Available Drives
or Mounted File Systems

Problem
You want a list of available drives (Windows) or mounted file systems (UNIX).

Solution
Use the is_dir() function to check which drive letters are valid (Windows):

<?php

// loop from "a" to "z"

// check which are active drives

// place active drives in an array

foreach(range('a','z') as $drive) {

 if (is_dir("$drive:")) {

 $driveList[] = $drive;

 }

}

// print array of active drive letters

print_r($driveList);

?>

Read the /etc/mtab file for a list of active mount points (UNIX):

<?php

// read mount information from mtab file

$lines = file("/etc/mtab") or die ("Cannot read file");

// iterate over lines in file

// get device and mount point

// add to array

foreach ($lines as $line) {

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 2 5

 $arr = explode(" ", $line);

 $mountList[$arr[0]] = $arr[1];

}

// print array of active mounts

print_r($mountList);

?>

Comments
For Web applications that interact with the file system—for example, an interactive
file browser or disk quota manager—a common requirement involves obtaining
a list of valid system drives (Windows) or mount points (UNIX). The previous
listings illustrate simple solutions to the problem.

Windows drive letters always consist of a single alphabetic character. So, to find
valid drives, use the is_dir() function to test the range of alphabetic characters,
from A to Z, and retain those for which the function returns true.

A list of active UNIX mounts is usually stored in the system file /etc/mtab
(although your UNIX system may use another file, or even the /proc virtual file
system). So, to find valid drives, simply read this file and parse the information
within it.

6.27 Calculating Disk Usage

Problem
You want to calculate the total disk space used by a disk partition or directory.

Solution
Use PHP’s disk_free_space() and disk_total_space() functions to
calculate the total disk usage for a partition:

<?php

// define partition

// for example, "C:" for Windows

// or "/" for UNIX

$dir = "c:";

// get free space in MB

$free = round(disk_free_space($dir)/1048576);

 2 2 6 P H P P r o g r a m m i n g S o l u t i o n s

// get total available space in MB

$total = round(disk_total_space($dir)/1048576);

// calculate used space in MB

$used = $total - $free;

echo "$used MB used";

?>

Write a recursive function to calculate the total disk space consumed by a particular
directory:

<?php

// function to recursively process

// a directory and all its subdirectories

function calcDirUsage($dir) {

 // check if argument is a valid directory

 if (!is_dir($dir)) { die("Argument '$dir' is not a directory!"); }

 // declare variable to hold running total

 global $byteCount;

 // open directory handle

 $dh = opendir($dir) or die ("Cannot open directory '$dir'!");

 // iterate over files in directory

 while (($file = readdir($dh)) !== false) {

 // filter out "." and ".."

 if ($file != "." && $file != "..") {

 if (is_dir("$dir/$file")) {

 // if this is a subdirectory

 // recursively process it

 calcDirUsage("$dir/$file");

 } else {

 // if this is a file

 // add its size to the running total

 $byteCount += filesize("$dir/$file");

 }

 }

 }

 // return the final list to the caller

 return $byteCount;

}

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 2 7

// calculate disk usage for directory in MB

$bytes = calcDirUsage("c:/windows");

$used = round($bytes/1048576);

echo "$used MB used";

?>

Comments
PHP’s disk_total_space() and disk_free_space() functions return the
maximum and available disk space for a particular drive or partition respectively,
in bytes. Subtracting the latter from the former returns the number of bytes currently
in use on the partition.

Obtaining the disk space used by a specific directory and its subdirectories is
somewhat more complex. The task here involves adding the sizes of all the files
in that directory and its subdirectories to arrive at a total count of bytes used. The
simplest way to accomplish this is with a recursive function such as the one outlined
in the previous listing, where file sizes are calculated and added to a running total.
Directories are deal with recursively, in a manner reminiscent of the technique outlined
in the listing in “6.11: Recursively Processing Directories.” The final sum will be the
total bytes consumed by the directory and all its contents (including subdirectories).

TIP

To convert byte values to megabyte or gigabyte values for display, divide by 1048576 or
1073741824 respectively.

6.28 Creating Temporary Files

Problem
You want to create a temporary file with a unique name, perhaps as a flag or
semaphore for other processes.

Solution
Use PHP’s tempnam() function:

<?php

// create temporary file with prefix "tmp"

$filename = tempnam("/tmp", "tmp");

echo "Temporary file [$filename] successfully created";

?>

 2 2 8 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP’s tempnam() function accepts two arguments, a directory name and a file
prefix, and attempts to create a file using the prefix and a randomly generated
identifier in the specified directory. If the file is successfully created, the function
returns the complete path and name to it—this can then be used by other file
functions to write data to it.

This listing offers an easy way to quickly create a file for temporary use, perhaps
as a signal to other processes. Note, however, that the file created by tempnam()
must be manually deleted with unlink() once it’s no longer required.

TIP

PHP’s tmpfile() function creates a unique, temporary file that exists only for the duration of
the script. Read more about this function at http://www.php.net/tmpfile.

6.29 Finding the System Temporary Directory

Problem
You want to retrieve the path to the system’s temporary directory.

Solution
Use PHP’s tempnam() function to create a temporary file, and then obtain the path
to it:

<?php

// create a temporary file and get its name

// result: "Temporary directory is /tmp"

$tmpfile = tempnam("/this/directory/does/not/exist", "tmp");

unlink ($tmpfile);

echo "Temporary directory is " . dirname($tmpfile);

?>

Comments
The tempnam() function provides an easy way to create a temporary file on the
system. Such a file is typically used as a semaphore or flag for other processes—for
example, it can be used for file locking processes or status indicators. The return
value of the tempnam() function is the full path to the newly minted file. Given this

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 2 9

file is always created in the system’s temporary directory, running the dirname()
function on the complete file path produces the required information.

NOTE

In this listing, the first parameter to tempnam() is a nonexistent directory path. Why? Well,
tempnam() normally requires you to specify the directory in which the temporary file is to
be created. Passing a nonexistent directory path forces the function to default to the system’s
temporary directory, thereby making it possible to identify the location.

An alternative approach consists of using the PEAR File_Util class, available
at http://pear.php.net/package/File. This class exposes a tmpDir()
method, which returns the path to the system temporary directory. Take a look:

<?php

// include File_Util class

include "File/Util.php";

// get name of system temporary directory

// result: "Temporary directory is /tmp"

$tmpdir = File_Util::tmpDir();

echo "Temporary directory is $tmpdir";

?>

6.30 Converting Between Relative
and Absolute File Paths

Problem
You want to convert a relative path to an absolute path.

Solution
Use PHP’s realpath() function:

<?php

// result: "/usr/local/apache/htdocs" (example)

echo realpath(".");

 2 3 0 P H P P r o g r a m m i n g S o l u t i o n s

// result: "/usr/local/apache" (example)

echo realpath("..");

// result: "/usr/local/"

echo realpath("/usr/local/mysql/data/../..");

?>

Comments
To convert a relative path to an absolute file path, use PHP’s realpath() function.
This function performs “path math,” translating all the relative locations in a path
string to return a complete absolute file path.

NOTE

On a tangential note, take a look at PEAR’s File_Util class, available from http://pear
.php.net/package/File, which comes with a method to calculate the difference
between two file paths. The following simple example illustrates:

<?php

// include File_Util class

include "File/Util.php";

// define two locations on the filesystem

$begin = "/usr/local/apache";

$end = "/var/spool/mail";

// figure out how to get from one to the other

// result: "../../../var/spool/mail"

echo File_Util::relativePath($end, $begin, "/");

?>

6.31 Parsing File Paths

Problem
You want to extract the path, file name, or extension path from a file path.

 C h a p t e r 6 : W o r k i n g w i t h F i l e s a n d D i r e c t o r i e s 2 3 1

Solution
Use PHP’s pathinfo() function to automatically split the file path into its
constituent parts:

<?php

// define path and filename

$path = "/etc/sendmail.cf";

// decompose path into constituents

$data = pathinfo($path);

print_r($data);

?>

Comments
The pathinfo() function is one of PHP’s more useful path manipulation functions.
Pass it a file path, and pathinfo() will split it into its individual components. The
resulting associative array contains separate keys for directory name, file name, and
file extension. You can then easily access and use these keys for further processing—
for example, the variable $data['dirname'] will return the value /etc.

TIP

When parsing file paths, also consider using the basename(), dirname(), and
realpath() functions. You can read about these functions in the PHP manual at http://
www.php.net/filesystem.

This page intentionally left blank

233

CHAPTER

7
Working with HTML

 and Web Pages
IN THIS CHAPTER:
 7.1 Displaying Text Files
 7.2 Highlighting PHP Syntax
 7.3 Wrapping Text
 7.4 Activating Embedded URLs
 7.5 Protecting Public E-mail Addresses
 7.6 Generating Tables
 7.7 Generating Random Quotes
 7.8 Generating Hierarchical Lists
 7.9 Using Header and Footer Templates
7.10 Charting Task Status with a Progress Bar
7.11 Dynamically Generating a Tree Menu
7.12 Dynamically Generating a Cascading Menu
7.13 Calculating Script Execution Times

7.14 Generating Multiple Web Pages from
a Single Template

7.15 Caching Script Output
7.16 Paginating Content
7.17 Detecting Browser Type and Version
7.18 Triggering Browser Downloads
7.19 Redirecting Browsers
7.20 Reading Remote Files
7.21 Extracting URLs
7.22 Generating HTML Markup from ASCII Files
7.23 Generating Clean ASCII Text

from HTML Markup
7.24 Generating an HTML Tag Cloud

 2 3 4 P H P P r o g r a m m i n g S o l u t i o n s

One of PHP’s biggest selling points, and a big part of its current popularity,
is the ease with which it can be used for Web development. By making
it simple to include variables and functions calls in regular HTML

pages, PHP reduces the pain of constructing interactive, data-driven sites and Web
applications. The fact that it’s extremely user-friendly and is supported with an
extensive online manual and user community is just icing on the cake.

This chapter is meant for developers who use PHP on a regular basis to interact
with Web applications and HTML pages. The recipe lineup includes marking up
ASCII files for display in a Web browser; turning text URLs into HTML hyperlinks;
generating DHTML menu trees from data in a flat file or database; tracking and
visually displaying the progress of server tasks; caching page output; and paginating
large volumes of content into smaller segments.

7.1 Displaying Text Files

Problem
You want to display the contents of a text file on a Web page.

Solution
Use PHP’s readfile() function to read and display the file:

<?php

// override default header

header("Content-Type: text/plain");

// display file contents

readfile("data.txt");

?>

Comments
The readfile() function reads a file and writes its content to the output buffer—in
this case, the HTTP client. This function provides a handy one-line shortcut to
display the contents of an external file in your Web application.

Note that PHP’s default configuration causes it to send the client a header
indicating that the following page is an HTML document. In this case, because the
file being displayed is a text file, it’s a good idea to override this default header with

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 3 5

one telling the client that what follows is plain text. This also forces the client to
preserve line breaks and carriage returns when rendering the file’s contents.

7.2 Highlighting PHP Syntax

Problem
You want to display one or more lines of PHP source code with syntax highlighting.

Solution
Use PHP’s highlight_file() or highlight_string() functions:

<?php

// set PHP source file

$sourceFile = "count-matches.php";

// highlight and display source

highlight_file($sourceFile);

// set PHP code string

$sourceStr = "<?php echo round(60*2)/7; ?>";

// highlight and display source

highlight_string($sourceStr);

?>

Comments
If you’d like users to be able to inspect the source code of your PHP scripts, PHP’s
highlight_file() and highlight_string() functions provide an easy way to
generate color-coded versions of PHP source code. The default colors used by these
functions can be configured in the php.ini file.

You might also want to try Aidan Lister’s PHP_Highlight class from http://
www.aidanlister.com/repos/, which not only highlights syntax but also adds
line numbers and links function calls to their descriptions in the online manual.
Here’s an illustration of this alternative:

<?php

// include PHP_Highlight class

include "PHP_Highlight.php";

 2 3 6 P H P P r o g r a m m i n g S o l u t i o n s

// initialize PHP_Highlight object

$highlight = new PHP_Highlight;

// set PHP source file

$source = "count-matches.php";

// load source file

$highlight->loadFile($source);

// print source as ordered list

$highlight->toList(false);

?>

7.3 Wrapping Text

Problem
You want text on a Web page to wrap at a particular column width.

Solution
Run the text through PHP’s wordwrap() function:

<?php

// define string

$text = "Fans of the group will have little trouble recognizing the

group's distinctive synthesized sounds and hypnotic dance beats, since

these two elements are present in almost every song on the album;

however, the lack of diversity and range is troubling, and I'm hoping

we see some new influences in the next album. More intelligent lyrics

might also help.";

// wrap string when displaying

echo nl2br(wordwrap($text,10));

?>

Comments
PHP’s wordwrap() function limits text display to a particular column size, thereby
allowing precise control over how text is rendered on a Web page. By default,
wordwrap() wraps strings at column 75 using the standard newline sequence,
but both these parameters are configurable; the previous listing illustrates this by

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 3 7

wrapping the string at column 10. The nl2br() function then translates the wrapped
text for display on a Web page by converting the newline sequence into the HTML
line break element
.

7.4 Activating Embedded URLs

Problem
You want to turn text URLs into active HTML hyperlinks.

Solution
Scan the text for URL patterns and replace them with HTML anchors using the
eregi_replace() function:

<?php

// function to turn URLs in text

// into HTML hyperlinks

function activateUrls($text) {

 return eregi_replace("([[:alnum:]]+://[^[:space:]]*[[:alnum:]↵
#?/&= +%_:]]*)", "\\1", $text);

}

// activate URLs in text block

// result: text with hyperlinks

print activateUrls("There are innumerable ways in which metacharacters ↵
can be combined to create powerful pattern-matching rules. For an ↵
in-depth introduction, take a look at ↵
http://www.melonfire.com/community/columns/trog/article.php?id=2 ↵
and the PHP manual pages at ↵
http://www.php.net/manual/en/ref.regex.php. ↵
You can also find sample regular expressions at http://www.regexlib ↵
.com/");

?>

Comments
Although the custom activateUrls() function in this listing appears daunting, it’s
actually fairly simple—all it does is scan the supplied string for patterns matching
the typical format of an URL and surrounds those patterns with the HTML code for
a hyperlink. Notice how the code incorporates the matching text segment (the URL
itself) into the replacement string (the anchor element) with a backreference.

 2 3 8 P H P P r o g r a m m i n g S o l u t i o n s

TIP

To turn a text file containing embedded URLs into an HTML document, combine this listing with the
technique outlined in the listing in “7.21: Extracting URLs.”

7.5 Protecting Public E-mail Addresses

Problem
You want to protect a publicly-displayed e-mail address from being captured by an
e-mail address harvester.

Solution
Mangle the address so that it is readable by a human but not recognizable as a
standard e-mail address to a computer program:

<?php

// function to protect

// publicly-displayed e-mail addresses

// replace @ with "at"

// . with "dot"

// - with "dash"

// _ with "underscore"

function protectEmail($email) {

// define array of search and replacement terms

 $search = array(".", "-", "_", "@");

 $replace = array(" dot ", " dash ", " underscore ", " at ");

 // perform search and replace operation

 return str_replace($search, $replace, $email);

}

// result: "john dot doe at blue dash viper dot domain dot net"

print protectEmail("john.doe@blue-viper.domain.net");

?>

Comments
With the advent of e-mail harvesters, protecting publicly displayed e-mail addresses
on a Web page has become a necessity. The technique discussed in this listing is used
on many popular Web sites, including the interactive version of the PHP manual.

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 3 9

This listing replaces the special symbols in an e-mail address with English words,
making the e-mail address unrecognizable as such to an address harvester. So @
becomes at, _ becomes underscore, and - becomes dash.

An alternative solution involves encrypting the e-mail address and using client-
side JavaScript to decrypt and display it. This solution is implemented fairly
elegantly in the PEAR HTML_Crypt class, available from http://pear.php
.net/package/HTML_Crypt. Here’s an example:

<?php

// include HTML_Crypt class

include "HTML/Crypt.php";

// initialize object with e-mail address

$c = new HTML_Crypt('john@some.domain.com', 8);

// add mailto: link

$c->addMailTo();

// send encrypted output to client

$c->output();

?>

Here, the HTML_Crypt() object encrypts an e-mail address, and turns into a
clickable hyperlink with the addMailTo() method. The output() method then
sends the encrypted string to the client, together with all the necessary JavaScript
code to turn it into a readable hyperlink in an HTTP client. Address harvesters
that examine the source of the page will only see an encrypted string and assorted
JavaScript code; the original e-mail address will not be visible to them (try it for
yourself and see!).

TIP

You can also encrypt your HTML source code with the HTML_Crypt class, to prevent users from
examining it. Here’s an illustration:
<html>

<head></head>

<body>

<div>The secret handshake is

<?php

// include HTML_Crypt class

include "HTML/Crypt.php";

 2 4 0 P H P P r o g r a m m i n g S o l u t i o n s

// initialize object with HTML/Javascript code

$c = new HTML_Crypt('up-down-diagonal-smack-down-up', 8);

// send encrypted output to client

$c->output();

?>

</div>

</body>

</html>

7.6 Generating Tables

Problem
You want to generate an HTML table using PHP method calls.

Solution
Use PEAR’s HTML_Table class:

<?php

// include HTML_Table class

include "HTML/Table.php";

// initialize object

$table = new HTML_Table(array("border" => 1, "cellpadding" => 5));

// set default value for empty cells

$table->setAutoFill("Unavailable");

// define data for table

$data = array(

 array("Name", "Skype", "Yahoo", "AIM", "MSN"),

 array("Luke", "luke09", null, null, "luke.skywalker"),

 array("Ben", null, "obiwan21", null, "obiwan.kenobi"),

 array("Darth", null, null, "darkdude", null)

);

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 4 1

// process data

// add cells as required

$rowCount = 0;

foreach ($data as $person) {

 $colCount = 0;

 foreach ($person as $p) {

 $table->setCellContents($rowCount,↵
$colCount, $data[$rowCount][$colCount]);

 $colCount++;

 }

 $rowCount++;

}

// arbitrarily add some more cells

$table->setCellContents(4, 0, "Leia");

$table->setCellContents(4, 4, "leia46");

// render and display table

echo $table->toHTML();

?>

Comments
PEAR’s HTML_Table class, available from http://pear.php.net/package/
HTML_Table, makes it easy to generate the HTML source code for a multirow,
multicolumn table using PHP method calls. Once an object of the class has been
initialized, you can use the setCellContents() method to create table cells
and attach content to them. You can add individual rows and columns with the
addRow() and addCol() method, respectively, while the toHTML() method
translates the in-memory table structure to valid HTML markup.

NOTE

This example also requires the HTML_Common class from http://pear.php.net/
package/HTML_Common.

Figure 7-1 illustrates the output of this listing.

 2 4 2 P H P P r o g r a m m i n g S o l u t i o n s

7.7 Generating Random Quotes

Problem
You want to display a random quotation or tag line in your page.

Solution
Use PHP’s exec() function to run the UNIX fortune program and save the output
to a variable:

<?php

// run the UNIX "fortune" command

// result: "Make yourself at home! Clean my kitchen." (example)

exec("/usr/bin/fortune", $results);

echo join("\n", $results);

?>

Figure 7-1 A dynamically generated HTML table

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 4 3

Create a file containing quotations or tag lines and use PHP’s array_rand()
function to pick one at random:

<?php

// read file containing data

$lines = file("fortunes.txt") or die("Cannot read file");

// extract a random line from the file

// result: "Make yourself at home! Clean my kitchen." (example)

echo $lines[array_rand($lines)];

?>

Comments
In order to add an element of dynamism to a Web page, many page authors like
to include a randomly selected quotation or tag line. The easiest way to do this,
especially on a UNIX-based Web server, is to capture the output of the UNIX
fortune program and display it in the page. The first listing of the previous two
does just this, using PHP’s exec() function to run the fortune program and save
its output to a variable.

Users who don’t have access to the UNIX fortune program, but would still
like to simulate this feature, can create a file containing quotations or taglines, one
on each line, and then use the file() function to read the file into an array. The
array_rand() function can then be used to pick a line at random.

7.8 Generating Hierarchical Lists

Problem
You want to display a series of nested arrays as an indented HTML list.

Solution
Write a recursive function to traverse the array and print its contents as a series of
nested, unordered HTML list elements.

<?php

// define hierarchical data set

$data = array (

 "bread",

 "eggs",

 2 4 4 P H P P r o g r a m m i n g S o l u t i o n s

 "cheese" => array("parmesan", "mozzarella"),

 "meat" => array("white" => array("fish", "chicken"),↵
"red" => array("beef", "lamb")),

 "milk"

);

// function to recursively traverse

// a series of nested arrays

function arrayTraverse($arr) {

 // check if input is array

 if (!is_array($arr)) { die ("Argument is not array!"); }

 // start HTML list

 echo "";

 // iterate over array

 foreach($arr as $key=>$value) {

 if (is_array($value)) {

 // if a nested array

 // print key

 // recursively traverse and

 // start a new, inner list

 print "$key";

 arrayTraverse($value);

 } else {

 // if not an array

 // print value as list item

 print "$value";

 }

 }

 // close HTML list

 echo "";

}

// process the hierarchical list

// print values

// use list indentation to indicate hierarchy

arrayTraverse($data);

?>

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 4 5

Comments
As discussed in the listing in “4.3: Processing Nested Arrays,” the usual technique
to process a series of nested arrays is to use a recursive function. In this listing,
every time the arrayTraverse() function moves down a level in the array
hierarchy, it generates an opening list element. Scalar elements at that level are
then printed as list items, while array elements are processed by recursively calling
arrayTraverse(). Once all the elements at a particular depth in the hierarchy
are processed, a closing list element is used to visually mark the end of the level.
Indentation is automatically handled by the HTTP client when it encounters the
nested list elements.

Figure 7-2 demonstrates what the output looks like.

Figure 7-2 A recursively-built, unordered, hierarchical list

 2 4 6 P H P P r o g r a m m i n g S o l u t i o n s

7.9 Using Header and Footer Templates

Problem
You want to use a common header and footer on all your Web pages.

Solution
Create separate files for the page header and footer, and use PHP’s include
construct to include them at the top and bottom of your Web pages:

File: header.php

<!-- header.php BEGIN -->

<html>

<head></head>

<body>

<center>This is the page header. Server time is↵
<?php echo date("H:i", time()); ?>.</center>

<!-- header.php END -->

File: footer.php

<!-- footer.php BEGIN -->

<p></p> <p></p>

<center>Content on this page is © myCompany. Be good.↵
We have lawyers.</center>

</body>

</html>

<!-- footer.php END -->

File: main.php

<?php include "header.php"; ?>

<p>This is the page content.<p>

<p>It can contain HTML,↵
client-side code like <script↵ language="Javascript">document.↵
writeln("JavaScript");</script> and↵
server-side code like <?php echo "PHP"; ?>.</p>

<?php include "footer.php"; ?>

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 4 7

Comments
PHP’s include construct makes it easy to pull external files into your PHP script.
These files may contain markup or program code; they are executed “in place” when
they are read into the script.

This listing demonstrates one application of the include construct: dynamically
importing header and footer templates into an HTML page. As it illustrates, the page
header and footer are stored in separate files, called header.php and footer
.php, respectively. The include() construct takes care of reading and displaying
these templates at the top and bottom of every page of the site. Naturally, any change
to the header or footer template will be immediately reflected in all pages that
include them.

As this listing illustrates, files include-d in this manner can contain static
markup as well as program code. Code placed in <?php...?> tags will be executed
by the parser in place as it is encountered.

7.10 Charting Task Status with a Progress Bar

Problem
You want to visually display elapsed and remaining time for a task to complete.

Solution
Use PEAR’s HTML_Progress2 class:

<?php

// increase script execution time limit

ini_set('max_execution_time', 600);

// include HTML_Progress class

include "HTML/Progress2.php";

// create object

$progress = new HTML_Progress2();

// define function to

// check if a number is a prime number

 2 4 8 P H P P r o g r a m m i n g S o l u t i o n s

function testPrime($num) {

 // divide each number

 // by all numbers lower than it (excluding 1)

 // if even one such operation returns no remainder

 // the number is not a prime

 for ($x=($num-1); $x>1; $x--) {

 if (($num%$x) == 0) { return false; }

 }

 return true;

}

?>

<html>

<head>

<?php

echo $progress->getStyle(false);

echo $progress->getScript(false);

?>

</head>

<body>

<div id="progress" style="position: absolute; left: 35%">

<?php

// initialize progress bar display

$progress->display();

?>

</div>

<div id="output" style="position: absolute; top: 100px">

<?php

// initialize counter

$count = 0;

// numbers to check for prime-ness

$limit = 10000;

// loop

while ($count <= $limit) {

 // test if counter value is a prime number

 // print if so

 if (testPrime($count)) { echo "$count "; }

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 4 9

 // on every 50th number

 // get percentage of task completed

 // refresh the progress bar

 if ($count % 50 == 0) {

 $percentDone = intval($count/$limit*100);

 $progress->moveStep($percentDone);

 }

 // increment counter

 $count++;

}

?>

</div>

</body>

</html>

Comments
In a typical HTTP transaction, a client requests a script and the server; and after
processing the request, it returns the output of the script to the client. Most of the
time, the time lag between request and response is trivial; however, in certain
situations—for example, when uploading a large file or querying a large database—
the time required to process the request is significant. And because the stateless
nature of HTTP precludes event notification or task progress reports, the user is
usually left watching a blank page as the server works its way through the script.

It is precisely to alleviate this situation that the PEAR HTML_Progress2 class was
developed. Available at http://pear.php.net/package/HTML_Progress2,
this class enables developers to provide users with visual notification of task
progress through a DHTML progress bar. With this class, a developer can check the
progress of a task and update the progress bar on a periodic basis, providing the user
with a clear estimate of elapsed and remaining time.

The previous example illustrates this, by calculating all the prime numbers between
0 and 10,000, and using a progress bar to visually display task progress. First, an
object of the HTML_Progress2() class is initialized, and then the getStyle() and
getScript() methods are used to generate the layout and JavaScript code is needed
to display the progress bar. Next, a while() loop is set to run 10,000 times, testing
every number between and 0 and 10,000 to see if it is prime. On every 50th number,
the percentage of task completion is calculated, and the object’s moveStep() method
is used to refresh the progress bar with the latest status.

 2 5 0 P H P P r o g r a m m i n g S o l u t i o n s

Figure 7-3 demonstrates what the output looks like.
Here’s another example, this one using a progress bar to track a remote file

download:

<?php

// increase script execution time limit

ini_set('max_execution_time', 600);

// include HTML_Progress class

include "HTML/Progress2.php";

// include HTTP_Request class

include "HTTP/Request.php";

// set URL of file to be downloaded

$remoteFile = "http://www.some.domain/files/remote.file.zip";

Figure 7-3 A dynamic indicator to chart task progress

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 5 1

// set name of local copy

$localFile = "downloads/local.file.zip";

// create objects

$progress = new HTML_Progress2();

$request = &new HTTP_Request();

// perform an HTTP request

// get size of file to be downloaded

$request->setUrl($remoteFile);

$request->setMethod("HEAD");

$request->sendRequest(false);

$actualSize = $request->getResponseHeader("Content-Length");

?>

<html>

<head>

<?php

echo $progress->getStyle(false);

echo $progress->getScript(false);

?>

</head>

<body>

<div id="progress" style="position: absolute; left: 0px">

<?php

// initialize progress bar display

$progress->display();

?>

</div>

<div id="output" style="position: absolute; top: 100px">

<?php

// open the URL

$rfp = fopen($remoteFile, "rb") or die("Cannot open remote file");;

// open local file

$lfp = fopen($localFile, "wb") or die("Cannot open local file");;

// read the remote file in chunks

// calculate percentage left at each stage

// update progress bar in 10% increments

while ($chunk = fread($rfp, 1024)) {

 fwrite($lfp, $chunk) or die("Cannot write to local file");

 2 5 2 P H P P r o g r a m m i n g S o l u t i o n s

 $recdSize += strlen($chunk);

 $percent = intval(($recdSize*100)/$actualSize);

 if (($percent % 10 == 0)) {

 $progress->moveStep($percent);

 // flag to improve performance

 // prevent unnecessary calling of display()

 }

}

// close URL pointer

fclose($rfp) or die("Cannot close remote file");

// close file

fclose($lfp) or die("Cannot close local file");

// display success message

echo "File [$remoteFile] successfully copied to [$localFile]";

?>

</div>

</body>

</html>

Here, in order to display the progress of the download, it is necessary to first
know the actual size of the file being downloaded. This information is obtained by
sending a HEAD request to the remote URL and checking the Content-Length
header to retrieve the file size in bytes.

Next, a progress bar object is initialized and PHP’s fopen() and fread()
functions are used to read the remote file and copy it to a local file. As the read/
write operation takes place, a counter keeps track of the total number of bytes
downloaded. At regular intervals, the current file size is compared to the actual file
size to calculate what percentage of the transaction is complete. This percentage
value is then used to update the progress bar via the moveStep() method.

NOTE

These examples also require the HTTP_Request class and the Event_Dispatcher class from
http://pear.php.net/package/HTTP_Request and http://pear
.php.net/package/Event_Dispatcher.

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 5 3

7.11 Dynamically Generating a Tree Menu

Problem
You want to display a hierarchical tree menu that uses client-side scripting to expand
and collapse tree nodes on demand.

Solution
Use PEAR’s HTML_TreeMenu class:

<?php

// include HTML_TreeMenu class

include "HTML/TreeMenu.php";

// initialize menu object

$root = new HTML_TreeMenu();

// set up first level

$a2h = new HTML_TreeNode(array("text" => "A-H", "link" => null));

$i2p = new HTML_TreeNode(array("text" => "I-P", "link" => null));

$q2z = new HTML_TreeNode(array("text" => "Q-Z", "link" => null));

// set up second level

$apparel = new HTML_TreeNode(array("text" => "Apparel",↵
"link" => "catalog/apparel.html"));

$accessories = new HTML_TreeNode(array("text" => "Accessories",↵
"link" => "catalog/accessories.html"));

$hdecor = new HTML_TreeNode(array("text" => "Home Decor",↵
"link" => "catalog/hdecor.html"));

$jewelery = new HTML_TreeNode(array("text" => "Jewelry",↵
"link" => "catalog/jewelry.html"));

$pharma = new HTML_TreeNode(array("text" => "Pharmacy",↵
"link" => "catalog/pharmacy.html"));

$shoes = new HTML_TreeNode(array("text" => "Shoes",↵
"link" => "catalog/shoes.html"));

$toys = new HTML_TreeNode(array("text" => "Toys",↵
"link" => "catalog/toys.html"));

 2 5 4 P H P P r o g r a m m i n g S o l u t i o n s

// set up third level

$men = new HTML_TreeNode(array("text" => "Men", "link" =>↵
"catalog/shoes-men.html"));

$women = new HTML_TreeNode(array("text" => "Women",↵
"link" => "catalog/shoes-women.html"));

// start linking nodes

// attach first level to root

$root->addItem($a2h);

$root->addItem($i2p);

$root->addItem($q2z);

// attach second-level items

// A-H

$a2h->addItem($apparel);

$a2h->addItem($accessories);

$a2h->addItem($hdecor);

// I-P

$i2p->addItem($jewelery);

$i2p->addItem($pharma);

// Q-Z

$q2z->addItem($shoes);

$q2z->addItem($toys);

// attach third-level items

$apparel->addItem($men);

$apparel->addItem($women);

$shoes->addItem($men);

$shoes->addItem($women);

?>

<html>

<head>

<!-- link in the JavaScript code for expanding/collapsing the tree -->

<script src="TreeMenu.js" language="JavaScript"↵
type="text/javascript"></script>

</head>

<body>

<?php

// initialize menu interface

// set options: path for tree images

// frame to load click targets

$menu = new HTML_TreeMenu_DHTML($root,↵
array("linkTarget" => "rhframe", "images" => "images/"));

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 5 5

// print menu tree

$menu->printMenu();

?>

</body>

</html>

Comments
PEAR’s HTML_TreeMenu class, available from http://pear.php.net/
package/HTML_TreeMenu, offers a PHP interface to build an expandable/
collapsible menu tree. The class uses two primary objects—HTML_TreeMenu(),
representing the menu tree, and HTML_TreeNode(), representing a node on the
tree—and offers various methods to link nodes to each other and thereby create
parent-child relationships between different levels of the menu.

Every HTML_TreeNode() object is initialized with a label and a target URL, and
exposes an addItem() method that is used to link it to other HTML_TreeNode()s.
Once HTML_TreeNode() objects have been created for every item of the menu, and
all the items have been correctly linked, an HTML_TreeMenu_DHTML() object is
initialized and the menu tree is generated, complete with all the JavaScript needed to
display and hide tree nodes.

Figure 7-4 demonstrates what the output of the listing looks like.

NOTE

This package requires you to separately install the menu’s JavaScript source file and tree
node images in the directory containing your PHP script(s). These items are included in the
downloadable version of the PEAR package.

TIP

The tree menu generated by HTML_TreeMenu is extremely customizable. The things you can
change include the node and branch images, the initial state of each node (whether expanded/
collapsed), the frame in which link targets appear, and whether the menu should retain its last
state across sessions.

Of course, in the real world, it’s more than likely that your menu will come from
a database, rather than be hard-coded into your script. Therefore, it’s also worthwhile
to see how the HTML_TreeMenu class can be used to dynamically generate a menu
tree from records stored in a MySQL database.

 2 5 6 P H P P r o g r a m m i n g S o l u t i o n s

Assume that the menu information is stored in a MySQL table, like this:

+----+----------------------------+-------------+--------+

| id | link | label | parent |

+----+----------------------------+-------------+--------+

| 2 | | A-H | 1 |

| 3 | catalog/apparel.html | Apparel | 2 |

| 4 | catalog/accessories.html | Accessories | 2 |

| 5 | catalog/hdecor.html | Home Decor | 2 |

| 6 | catalog/apparel-men.html | Men | 3 |

| 7 | catalog/apparel-women.html | Women | 3 |

| 8 | | I-P | 1 |

| 9 | catalog/jewelry.html | Jewelry | 8 |

| 10 | catalog/pharmacy.html | Pharmacy | 8 |

| 11 | | Q-Z | 1 |

| 12 | catalog/shoes.html | Shoes | 11 |

| 13 | catalog/shoes-men.html | Men | 12 |

| 14 | catalog/shoes-women.html | Women | 12 |

| 15 | catalog/toys.html | Toys | 11 |

+----+----------------------------+-------------+--------+

Figure 7-4 A collapsible HTML tree menu

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 5 7

In this schema, parent-child relationships are determined by the interaction of the id
and parent columns. Every record is identified by a unique id; when this id appears
in the parent column of a record, it sets up a parent-child relationship between the
corresponding records. All records with parent 1 are assumed to be at the root level.

The following code reads the menu information and converts it into a collapsible
tree menu with the HTML_TreeMenu class:

<?php

// include HTML_TreeMenu class

include "HTML/TreeMenu.php";

// initialize menu object

$root = new HTML_TreeMenu();

// create the first node (node id 1)

$node1 = new HTML_TreeNode(array("text" => "Sitemap", "link" => ""));

$root->addItem($node1);

// open connection

$connection = mysql_connect("localhost", "user", "pass")↵
or die ("Unable to connect!");

// select database

mysql_select_db("db1") or die ("Unable to select database!");

// create query

$query = "SELECT id, link, label, parent FROM menu ORDER BY parent";

// execute query

$result = mysql_query($query)↵
or die ("Error in query: $query. " . mysql_error());

// dynamically create nodes for each parent/child combination

// attach each child to its parent

if (mysql_num_rows($result) > 0) {

 while ($row = mysql_fetch_assoc($result)) {

 $parentObjName = "node" . $row['parent'];

 $childObjName = "node" . $row['id'];

 $$childObjName = new HTML_TreeNode(↵
array("text" => $row["label"], "link" => $row["link"]));

 $$parentObjName->addItem($$childObjName);

 }

}

 2 5 8 P H P P r o g r a m m i n g S o l u t i o n s

// free result set memory

mysql_free_result($result);

// close connection

mysql_close($connection);

?>

<html>

<head>

<!-- link in the JavaScript code for expanding/collapsing the tree -->

<script src="TreeMenu.js" language="JavaScript"↵
 type="text/javascript"></script>

</head>

<body>

<?php

// initialize menu interface

// set options: path for tree images

// frame to load click targets

$menu = new HTML_TreeMenu_DHTML($root,↵
array("linkTarget" => "rhframe", "images" => "images/"));

// print menu tree

$menu->printMenu();

?>

</body>

</html>

Here, a MySQL query retrieves all the nodes from the database, and a while()
loop is used to create HTML_TreeNode() objects for each one. The child nodes
are then linked to the parent nodes by means of the parent and id fields, and the
menu tree is rendered via the printMenu() method. Note that the query orders the
result set by parent ID, to avoid the situation of child nodes being created before
their parents.

7.12 Dynamically Generating a Cascading Menu

Problem
You want to display a cascading menu that uses client-side scripting to hide and
show menu levels.

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 5 9

Solution
Use the phpLayersMenu class:

<html>

<head>

<link rel="stylesheet" href="layersmenu-gtk2.css" ↵
type="text/css"></link>

<script language="JavaScript" type="text/javascript"↵
src="libjs/layersmenu-browser_detection.js"></script>

<script language="JavaScript" type="text/javascript"↵
src="libjs/layersmenu-library.js"></script>

<script language="JavaScript" type="text/javascript" ↵
src="libjs/layersmenu.js"></script>

</head>

<body>

<?php

// include PHPLayers class

include "lib/PHPLIB.php";

include "lib/layersmenu-common.inc.php";

include "lib/layersmenu.inc.php";

// initialize menu object

$menu = new LayersMenu();

// define file paths

$menu->setDirroot(".");

$menu->setImgwww("menuimages/");

$menu->setIconwww("menuicons/");

// set menu templates

$menu->setHorizontalMenuTpl ↵
("templates/layersmenu-horizontal_menu.ihtml");

$menu->setSubMenuTpl("templates/layersmenu-sub_menu.ihtml");

// define menu as string

// this menu has 2 main menu items

$menuStr =<<< END

.|Meals|||

..|Breakfast|breakfast.html||

...|Cornflakes|breakfast.html#corn||

...|Toast|breakfast.html#toast||

..|Lunch|lunch.html||

...|Pasta Amatriciana|lunch.html#specials||

 2 6 0 P H P P r o g r a m m i n g S o l u t i o n s

..|Dinner|dinner.html||

...|Roast Pork|dinner.html#option1||

...|Fried Trout with Scallions|dinner.html#option2||

.|Movies|||

..|Romance|http://some.domain.com/show.php?genre=Romance||

...|Sleepless In Seattle|http://some.domain.com/review.php?id=84||

..|Comedy|http://some.domain.com/show.php?genre=Comedy||

...|Meet The Parents|http://some.domain.com/review.php?id=9||

...|Four Weddings And A Funeral|http://some.domain.com/ ↵
review.php?id=17||

..|Action|http://some.domain.com/show.php?genre=Action||

...|Rambo: First Blood|http://some.domain.com/review.php?id=54||

END;

// parse menu string

$menu->setMenuStructureString($menuStr);

$menu->parseStructureForMenu("myMenu");

// generate menu

$menu->newHorizontalMenu("myMenu");

// render and display menu

$menu->printHeader();

$menu->printMenu("myMenu");

$menu->printFooter();

?>

</body>

</html>

Comments
The phpLayersMenu class, available from http://phplayersmenu.sourceforge
.net/, is a free, open-source PHP interface to a variety of menu types, including
cascading menus. Developed by Marco Pratesi, phpLayersMenu can read a menu
structure from a text file or database, and generate horizontal or vertical cascading
menus using client-side scripting.

The phpLayersMenu class comes with many different menu templates and, once
a LayersMenu() object is initialized, one of the first things you will do is decide
which template to use for the primary and secondary menus. This information is
defined through the setHorizontalMenuTpl() and setSubMenuTpl() methods,
respectively.

The menu structure itself may be retrieved from a string, a flat file, or a database.
In string or file format, a node on the menu tree is represented by a line containing

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 6 1

a series of pipe-separated values, with parents and children arranged in descending
order. The previous listing illustrates this format:

.|Meals|||

..|Breakfast|breakfast.html||

...|Cornflakes|breakfast.html#corn||

..|Lunch|lunch.html||

...|Pasta Amatriciana|lunch.html#specials||

The setMenuStructureString() method attaches this menu structure to the
LayersMenu() object, and the parseStructureForMenu() method then parses it
and creates an in-memory representation of the menu. The newHorizontalMenu()
method generates the menu, and the printHeader(), printFooter(), and
printMenu() methods take care of translating the menu into HTML.

Figure 7-5 illustrates what the output of the previous listing looks like.
If you found the menu structure string in the previous listing somewhat awkward,

don’t worry, because phpLayersMenu makes it extremely easy to retrieve your

Figure 7-5 A cascading HTML menu

 2 6 2 P H P P r o g r a m m i n g S o l u t i o n s

menu nodes and relationships from a database. To illustrate, consider the following
MySQL table, which contains a complete set of menu items:

+----+----------------------------+-------------+--------+

| id | link | label | parent |

+----+----------------------------+-------------+--------+

| 2 | | A-H | 1 |

| 3 | catalog/apparel.html | Apparel | 2 |

| 4 | catalog/accessories.html | Accessories | 2 |

| 5 | catalog/hdecor.html | Home Decor | 2 |

| 6 | catalog/apparel-men.html | Men | 3 |

| 7 | catalog/apparel-women.html | Women | 3 |

| 8 | | I-P | 1 |

| 9 | catalog/jewelry.html | Jewelry | 8 |

| 10 | catalog/pharmacy.html | Pharmacy | 8 |

| 11 | | Q-Z | 1 |

| 12 | catalog/shoes.html | Shoes | 11 |

| 13 | catalog/shoes-men.html | Men | 12 |

| 14 | catalog/shoes-women.html | Women | 12 |

| 15 | catalog/toys.html | Toys | 11 |

+----+----------------------------+-------------+--------+

In this schema, parent-child relationships are determined by the interaction of the id
and parent columns. Every record is identified by a unique id; when this id appears
in the parent column of a record, it sets up a parent-child relationship between the
corresponding records. All records with parent 1 are assumed to be at the root level.

The following code reads the menu information and converts it into a cascading
menu with the phpLayersMenu class:

<html>

<head>

<link rel="stylesheet" href="layersmenu-gtk2.css" type="text/css"> ↵
</link>

<script language="JavaScript" type="text/javascript" ↵
src="libjs/layersmenu-browser_detection.js"></script>

<script language="JavaScript" type="text/javascript" ↵
src="libjs/layersmenu-library.js"></script>

<script language="JavaScript" type="text/javascript"↵
src="libjs/layersmenu.js"></script>

</head>

<body>

<?php

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 6 3

// include PHPLayers class

include "lib/PHPLIB.php";

include "lib/layersmenu-common.inc.php";

include "lib/layersmenu.inc.php";

// include PEAR and DB classes for database connectivity

include "PEAR.php";

include "DB.php";

// initialize menu object

$menu = new LayersMenu();

// define file paths

$menu->setDirroot(".");

$menu->setImgwww("menuimages/");

$menu->setIconwww("menuicons/");

// set menu templates

$menu->setHorizontalMenuTpl ↵
("templates/layersmenu-horizontal_menu.ihtml");

$menu->setSubMenuTpl("templates/layersmenu-sub_menu.ihtml");

// define database connection parameters as DSN

$menu->setDBConnParms('mysql://user:pass@localhost/db1');

// set name of menu table

$menu->setTableName('menu');

// map table fields

$menu->setTableFields(array(

 "id" => "id",

 "parent_id" => "parent",

 "text" => "label",

 "href" => "link",

 "title" => "label",

 "icon" => "",

 "target" => "",

 "orderfield" => "",

 "expanded" => ""));

 2 6 4 P H P P r o g r a m m i n g S o l u t i o n s

// retrieve menu information

$menu->scanTableForMenu("myMenu");

// generate menu

$menu->newHorizontalMenu("myMenu");

// render and display menu

$menu->printHeader();

$menu->printMenu("myMenu");

$menu->printFooter();

?>

</body>

</html>

Here, the PEAR DB class is used to open a connection to the menu database,
and the setTableFields() method is used to map specific table fields into the
phpLayersMenu format. The scanTableForMenu() method then builds an in-
memory structure representing the menu, and the printMenu() function renders it
to the Web page.

NOTE

This example also requires the DB class from http://pear.php.net/package/DB.

7.13 Calculating Script Execution Times

Problem
You want to calculate and display how long it took PHP to render a particular page.

Solution
Use PHP’s microtime() function to time how long the script takes:

<?php

// start timer

$start = (float) array_sum(explode(' ', microtime()));

// execute some time-consuming code

// function to check if a number is prime

function testPrime($num) {

 for ($x=($num-1); $x>1; $x--) {

 if (($num%$x) == 0) {

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 6 5

 return false;

 }

 }

 return true;

}

// test first 1000 numbers for prime-ness

while ($count <= 1000) {

 // test if counter value is a prime number

 // print if so

 if (testPrime($count)) {

 echo "$count ";

 }

 $count++;

}

// end timer

$end = (float) array_sum(explode(' ', microtime()));

// calculate and print elapsed time

// result: "Total processing time was 0.627 seconds" (example)

echo "Total processing time was " . sprintf("%.4f",↵
($end-$start)) . " seconds";

?>

Comments
PHP’s microtime() function returns the current UNIX timestamp in
microseconds. This extra precision makes it useful for timing script execution
and other tasks involving performance benchmarks. In the previous listing, two
timestamps are generated, one at the start of the script and the other at the end. The
difference between the two is the time taken for script execution.

7.14 Generating Multiple Web Pages
from a Single Template

Problem
You want to add an element of reusability to your Web pages by creating standard
templates and changing their content as required.

 2 6 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
First, create a template for your page, using variable placeholders for the dynamic
content:

File: chapter.tmpl

<!-- template for book chapter -->

<html>

<head></head>

<body>

<!-- chapter number and title -->

<div id="header" style="font-weight: bolder; font-style: italic;↵
padding-bottom: 15px">

Chapter {$chapterNum}: {$chapterTitle}

</div>

<!-- chapter text -->

<div id="content">{$chapterContents}</div>

<!-- page number -->

<div id="pagecount" style="text-align: right; font-size: smaller">

Page {$currentPage} of {$totalPages}

</div>

</body>

</html>

Then, use the Smarty template engine to replace the placeholders with actual data
and render the page:

<?php

// include Smarty class

include "Smarty.class.php";

// create object

$tmpl = new Smarty();

// set directory locations

$tmpl->template_dir = "./";

$tmpl->compile_dir = "./";

// set values for template variables

$tmpl->assign("chapterNum", 8);

$tmpl->assign("chapterTitle", "Welcome to Woohoo-Land!");

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 6 7

$tmpl->assign("chapterContents", "The mice jumped over the cat,↵
giggling madly as the moon exploded into green and purple confetti. ↵
\"Ah\", sighed the orange rabbit, \"It's so nice to be home in spring!↵
It's enough to put a spring into anyone's step.\"");

$tmpl->assign("currentPage", 1);

$tmpl->assign("totalPages", 17);

// parse and display the template

$tmpl->display("chapter.tmpl");

?>

Comments
It’s generally considered a Good Thing for an application’s user interface to be
independent of the business logic that drives it. This separation of the presentation
layer from the functional layer affords both developers and designers a fair degree
of independence when it comes to altering how the application looks and works, and
also produces cleaner, more readable code (because PHP function calls are no longer
interspersed within HTML markup).

The easiest way to accomplish this separation is by using page templates to separate
presentation and layout information from program code, and a template engine to
combine the two as needed. In this context, a template is simply a text file, containing
both static elements (HTML code, ASCII text, et al) and special variable placeholders.
When the template engine parses such a template, it automatically replaces the variable
placeholders with actual values (referred to as variable interpolation). These values
may be defined by the developer at run time, and may be either local to a particular
template, or global across all the templates within an application.

This listing uses the popular Smarty template engine, available from http://
smarty.php.net/. Here, a template is defined for a Web page, with variable
placeholders for dynamic elements such as the title and page number. Then, a PHP
script initializes the template engine and uses its assign() method to assign values
to the placeholders. Once all variable placeholders have been assigned values, the
display() method is used to render the final page. Figure 7-6 illustrates the result:

To generate a new page from the same template, simply set new values for the
template variables with assign() and call display() to render the page again.

Of course, you can do a lot more with Smarty (or, in fact, any template engine)
than just this basic assign-and-display operation. Displaying parts of a page
conditionally, creating reusable HTML blocks, nesting one template within another,
and repeatedly rendering a single subtemplate to create a list, are some of the tasks
a template engine makes possible. Learn more about this in the tutorial available at
http://www.melonfire.com/community/columns/trog/article
.php?id=130.

 2 6 8 P H P P r o g r a m m i n g S o l u t i o n s

NOTE

The values assigned in this particular listing are hard-coded into the PHP script for illustrative
purposes; in the real world, it’s far more likely that these values will be produced from a database
or other content source.

7.15 Caching Script Output

Problem
You want to improve response times by caching the output of frequently used scripts or
scripts that perform time-consuming tasks whose output doesn’t change very frequently.

Figure 7-6 A page generated from a template engine

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 6 9

Solution
Use PEAR’s Cache class to implement a page cache:

<?php

// include Cache class

include "Cache.php";

// initialize Cache object

$cache = new Cache('file', array('cache_dir' => 'cache/'));

// generate an ID for this page

$id = $cache->generateID("thisPage");

if ($page = $cache->get($id)) {

 // if the page is already cached

 // get it and print it

 print "\n[CACHED DATA]\n";

 print $page;

} else {

 // if the page is not cached

 // generate and store it in the cache

 $output = "The sum of the numbers 1 to 99000 is: " .↵
 array_sum(range(1,99000));

 echo $output;

 $cache->save($id, $output, 60);

}

?>

Comments
Complex business logic increases the time taken for a script to execute, and affects
the user’s perception of how slow or fast a server is. So, to improve response time,
it’s a good idea to cache the output of frequently accessed scripts. A simple caching
mechanism can be implemented via PEAR’s Cache class, available from http://
pear.php.net/package/Cache.

The business logic to use a Cache object instance is fairly simple: check if the
required data already exists in the cache, retrieve and use it if it does, generate it
and save a copy to the cache if it doesn’t. Most of this logic is accomplished via the
get() and save() methods of the Cache() object. The get() method checks to
see if the data exists in the cache and returns it if so, while the save() method saves
data to the cache. Input arguments to the save() method are the data to be cached
and a unique identifier that is later used to retrieve the cached data.

 2 7 0 P H P P r o g r a m m i n g S o l u t i o n s

The previous listing illustrates this logic, calculating the sum of the first 99,000
numbers and displaying it as a Web page. Because performing this calculation is a time-
intensive process and the output isn’t likely to change at all, it makes sense to perform it
once and then cache the page so that subsequent requests are dealt with quickly.

In this listing, a Cache() object is initialized and a unique ID is generated for
the page. When a request arrives for the page, PHP checks to see if a cached version
of the page exists via the get() method. If a cached version does not exist, the
calculation is performed and the page is generated and save()-d to the output
buffer. The contents of the output buffer are then cached and simultaneously sent to
the client. Subsequent requests are served directly from the cache.

NOTE

For this script to work, you must manually create a directory for the cache, and tell the class about
it in the class constructor.

The data in the cache remains valid for the duration specified in the Cache
object’s save() method—in this case, for 60 seconds. The page will be regenerated
and re-cached for requests outside this time window.

In most cases, your page will not contain a single string, but will be generated in
a composite manner from SQL query output, calculations, HTML markup, headers
and footers, and images and forms. In these situations, you can combine a cache with
an output buffer, which provides an easy way to save the final page to the cache.
Here’s an example:

<?php

// include Cache class

include "Cache.php";

// initialize Cache object

$cache = new Cache('file', array('cache_dir' => 'cache/'));

// generate an ID for this page

$id = $cache->generateID("myPage");

// see if the page is cached

// if so, get it and print it

// if it is not cached

// generate the page

// and store it in the output buffer

if ($data = $cache->get($id)) {

 print "\n[CACHED DATA]\n";

 print $data;

} else {

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 7 1

 // initialize the output buffer

 ob_start();

 // do whatever is needed

 // to generate the page:

 // - perform SQL queries

 // - parse, read, write files

 // - print HTML header, body, footer

 ?>

 <?php include "header.php"; ?>

 <p>This is the page content.<p>

 <p>It can contain HTML,↵
client-side code like <u><script↵
language="Javascript">document.writeln("JavaScript");</script></u>↵
and server-side code like <u><?php echo "PHP"; ?></u>.</p>

 <p>It can include calculations:
<u>

 <?php

 echo "The product of the numbers 1 to 99 is ";

 $product = 1;

 foreach (range(1,99) as $num) {

 $product = $num * $product;

 }

 echo $product;

 ?></u></p>

 <p>It can include the output of SQL queries:
<u>

 <?php

 echo "The MySQL server has been up for ";

 $connection = mysql_connect("localhost", "root", "")↵
or die ("Unable to connect!");

 $result = mysql_query("SHOW STATUS LIKE 'Uptime'")↵
or die ("Error in query: $query. " . mysql_error());

 $row = mysql_fetch_assoc($result);

 echo $row['Value'] . " seconds.";

 mysql_close($connection);

 ?></u>

 <p>The current server time is <u>↵
<?php echo date("H:i:m", time()); ?></u></p>

 2 7 2 P H P P r o g r a m m i n g S o l u t i o n s

 <?php include "footer.php"; ?>

 <?php

 // complete page is now stored in the output buffer

 // save buffer contents to the cache

 // set cached data to expire after 1 minute

 $cache->save($id, ob_get_contents(), 60);

 // dump buffer contents to the client

 ob_end_flush();

}

?>

In the previous listing, the final page is generated from external header and
footer templates, the result of a calculation, the result of an SQL query, the output
of various PHP function calls, and some client-side JavaScript. In fact, this is
representative of how most Web pages are generated, and the approach to use is
to wrap the page in calls to PHP’s output buffer functions. Once the page has been
generated, the ob_get_contents() function is used to retrieve the final content of
the buffer and save it to the cache; the ob_end_flush() function then dumps the
same output to the client. Any subsequent request for the page will then receive the
cached version (at least until the cache reaches its expiry value).

7.16 Paginating Content

Problem
You want to make a collection of records more readable, by splitting it into “pages.”

Solution
Use PEAR’s Pager class to break a data set into smaller pages and generate
navigation links between them:

<html>

<head></head>

<body>

<?php

// include Pager class

include "Pager/Pager.php";

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 7 3

// define directory path

$dir = '/home/user/downloads';

// check if it is a directory

if (is_dir($dir)) {

 // open directory handle

 $dh = opendir($dir) or die ("Cannot open directory '$dir'!");

 // iterate over files in directory

 while (($file = readdir($dh)) !== false) {

 // optional, filter out "." and ".."

 if ($file != "." && $file != "..") {

 // store the file list and file size in an array

 $fileList[] = array($file, filesize($dir . "/" . $file));

 }

 }

 // close directory

 closedir($dh);

} else {

 die("Argument '$dir' is not a directory!");

}

// set up the paging engine

// define items per page

$options = array(

 "itemData" => $fileList, // data set

 "perPage" => 10, // items per page

 "delta" => 8, // number of page numbers to display

 "mode" => "Jumping" // paging mode

);

// initialize object

$pager = &Pager::factory($options);

// get items for this page as array

$items = $pager->getPageData();

// get page numbers and links for this page

$links = $pager->getLinks();

// get total number of pages

$totalPages = $pager->numPages();

 2 7 4 P H P P r o g r a m m i n g S o l u t i o n s

// get current page number

$currentPage = $pager->getCurrentPageID();

?>

<p align="center" />

<?php

// header

// print next, previous links

// print page number links

echo $links['all'];

?>

<p align="left" />

<?php

// print items on this page

// file name and size

foreach ($items as $item) {

 echo $item[0] . " (" . $item[1] . " bytes)<p />";

}

?>

<p align="right" />

<?php

// footer

// print current page number and total pages

echo "Page $currentPage of $totalPages";

?>

</body>

</html>

Comments
It’s usually not very user friendly to display a large volume of data on a single HTML
page, as doing so forces the user to scroll up and down endlessly to view the results.
This is where pagination—the act of breaking up large data sets into smaller subsets
and displaying them one page at a time—can help. By breaking the large mass of
data into smaller, more easily navigable pages, you increase the usability of your
application, and you also avoid overwhelming the user with mountains of data at once.

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 7 5

PEAR’s Pager class, available from http://pear.php.net/package/Pager,
takes all the pain out of paginating large data sets. Given an array of values, the
Pager class breaks the array into discrete “pages” of smaller elements and generates
navigation links to move back and forth between the pages.

The previous listing demonstrates the Pager class in action. The data set here is a
list of all the files in a directory; this list is broken into pages of ten items each, with
the Pager class providing the navigation between pages.

The data set is passed to the Pager object via the $options array. This array also
sets various paging parameters, such as the number of items per page and the number of
pages accessible through the navigation links. The getPageDate() method retrieves,
as an array, the list of items for the current page, while the getLinks() method
generates an array of “next page” and “previous page” navigation links, together with a
clickable list of page numbers for easy access to any part of the collection.

Figure 7-7 demonstrates what the output looks like.

Figure 7-7 A directory listing, broken up into pages

 2 7 6 P H P P r o g r a m m i n g S o l u t i o n s

7.17 Detecting Browser Type and Version

Problem
You want to identify the user’s browser type and version number.

Solution
Use PHP’s get_browser() function:

<?php

// get browser information

$browser = get_browser(null, true);

// result: "Your browser is Firefox 2.0" (example)

print "Your browser is " . $browser['browser'] . " " . ↵
$browser['version'];

?>

Comments
The get_browser() function evaluates the $_SERVER['HTTP_USER_AGENT']
string and returns information about the client currently accessing the script. This
information includes the client identification string and version number, together
with detailed information on the client’s capabilities. All this information is returned
as an associative array, which might look something like Figure 7-8.

You can use the information supplied by get_browser() to selectively display
code optimized for particular browser types and version numbers. Here’s an
example:

<?php

if (($browser['browser'] == "Opera") && ($browser['version'] >= 6)) {

 // code for Opera 6.x

}

?>

NOTE

In order to use the get_browser() function, you must have configured PHP to point to a
valid browscap.ini file on your system. You can obtain a browscap.ini file from
http://www.garykeith.com/browsers/downloads.asp, or you can visit
the PHP manual page at http://www.php.net/get-browser for more information.

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 7 7

An alternative here is to use the phpSniff class, available from http://
phpsniff.sourceforge.net/. This class, like the get_browser() function,
evaluates the user agent string and returns information on the client’s capabilities and
type. Here’s an example of how it can be used:

<?php

// include phpSniff library

include "phpSniff.class.php";

// initialize object

$sniffer = new phpSniff($_SERVER['HTTP_USER_AGENT']);

// get browser name, version and platform

$browser = $sniffer->get_property('browser');

$version = $sniffer->get_property('version');

$platform = $sniffer->get_property('platform');

$os = $sniffer->get_property('os');

Figure 7-8 Output of the get_browser() function

 2 7 8 P H P P r o g r a m m i n g S o l u t i o n s

// result: "Your browser is mz 1.8.1 running on win xp" (example)

print "Your browser is $browser $version running on $platform $os";

?>

7.18 Triggering Browser Downloads

Problem
You want to send the user’s browser a file and manually trigger its download
mechanism.

Solution
Send the browser appropriate Content-Type and Content-Disposition
headers, to force it to begin downloading the file:

<?php

// set the filename

$filename = "/tmp/photos.zip";

// send headers to client to initiate file download

header ("Content-Type: application/octet-stream");

header ("Content-Length: " . filesize($filename));

header ("Content-Disposition: attachment; filename=" .

basename($filename));

// send file to client

readfile($filename);

?>

Comments
If your PHP application needs to save a file to the client’s disk, it must first trigger
the client’s file download mechanism. The easiest way to do this is to send the client
a series of headers, telling it that what follows is a binary file and should be saved to
disk instead of being rendered. Once the headers have been sent, the readfile()
function can be used to stream the file to the client.

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 7 9

NOTE

Microsoft Internet Explorer suffers from a bug that causes some versions to not respond to these
headers with an appropriate input dialog. For a list of possible hacks around this flaw, visit
http://www.php.net/header.

NOTE

The call to PHP’s header() function must precede any script output, unless output buffering is
enabled.

7.19 Redirecting Browsers

Problem
You want to redirect the user’s browser from one URL to another.

Solution
Send the browser an appropriate Location header to send it to a new URL:

<?php

// send the browser a header

// with the new location

header("Location: http://www.google.com");

exit;

?>

Comments
To transparently redirect an HTTP client from one URL to another, all that’s needed
is to send it a Location HTTP header with the new URL. This can be easily
accomplished via PHP’s header() function, as illustrated in this listing. This
listing is commonly used to redirect a client to an error page if, for example, user
credentials or form data values are found to be invalid.

NOTE

The call to PHP’s header() function must precede any script output, unless output buffering is
enabled.

 2 8 0 P H P P r o g r a m m i n g S o l u t i o n s

7.20 Reading Remote Files

Problem
You want to retrieve the contents of a remote file.

Solution
Use PHP’s file_get_contents() function to read data from the corresponding
file URL:

<?php

// read and display file contents

header ("Content-Type: text/plain");

$data = file_get_contents("http://some.domain.com/index.html")↵
or die("Cannot open URL");

echo $data;

?>

Comments
Reading the source code of a Web page over HTTP is easy, given that PHP’s
file functions can all be used to read remote files. In this listing, the file_get_
contents() function is used to read a remote URL and store the retrieved data in
a PHP variable, which may be processed or displayed.

An alternative technique of retrieving the source code for a remote file consists
of using the PEAR HTTP_Request class to generate and send a GET request for the
URL. The content of the URL is contained in the body of the server’s response to
such a request. Here’s what the code looks like:

<?php

// send content header

header ("Content-Type: text/plain");

// include HTTP_Request class

include "HTTP/Request.php";

// create object

$request = &new HTTP_Request();

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 8 1

// perform an HTTP request

// get body

$request->setUrl("http://some.domain.com/index.html");

$request->setMethod("GET");

$request->sendRequest();

echo $request->getResponseBody();

?>

NOTE

The text/plain header in these examples is used to force the client to render the data is
receives “as is.” Without this header, the client would attempt to render any HTML code in the
response body instead of displaying it.

7.21 Extracting URLs

Problem
You want to extract a list of all the URLs on a Web page.

Solution
Scan the HTML source of the page for URL patterns using the preg_match_all()
function:

<?php

// read URL contents into a string

$dataStr = file_get_contents("http://www.some.domain.com/page.html")↵
or die ("Cannot open URL");

// look for URLs

// defined as strings beginning with http(s) or ftp

preg_match_all("/(http|https|ftp):\/\/[^<>[:space:]]+[[: ↵
alnum:]#?\/&=+%_]/", $dataStr, $matches);

// place matches in a separate array

$urlList = $matches[0];

print_r($urlList);

?>

 2 8 2 P H P P r o g r a m m i n g S o l u t i o n s

Comments
Chapter 1 has numerous examples of the preg_match_all() function being used
to extract a list of matching substrings from a larger string. In this case, the substring
to be matched is a pattern representing the typical Web URL, and the text to be
scanned is the source code of a Web page. Matches, if any, are placed in a separate
array for further processing.

An alternative technique, based on suggestions posted in the online PHP manual,
involves scanning the page source for href and src attributes and retrieving their
values. Here’s how:

<?php

// read URL contents into a string

$dataStr = file_get_contents("http://www.some.domain.com/page.html")↵
or die ("Cannot open URL");

// look for URLs

// defined as strings referenced in <a> or elements

preg_match_all("/(href|src)=(\"|')*([^<>[:space:]]+[[:alnum:]#?\/&=+%_])↵
(\"|')*/i", $dataStr, $matches);

// place matches in a separate array

$urlList = $matches[3];

print_r($urlList);

?>

This technique has the advantage of returning both relative and absolute URLs
from image and anchor elements in the page, and may be suitable for some
applications—for example, a Web spider. Notice the use of parentheses within
the regular expression to isolate and index particular segments of the matched
substrings.

7.22 Generating HTML Markup
from ASCII Files

Problem
You want to mark up an ASCII file as a Web page.

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 8 3

Solution
Use PHP’s nl2br() and htmlentities() functions to turn ASCII text into its
HTML equivalent:

<?php

// read ASCII data

$ascii = file("shoppinglist.txt") or die("Cannot read from file");

// attach custom page header

$html =<<< HEADER

<html>

<head></head>

<body>

Rendered page follows: <hr />

HEADER;

// add page contents

// convert ASCII data to HTML

$html .= nl2br(htmlentities(implode("", $ascii)));

// add custom page footer

$html .=<<< FOOTER

<hr />Rendered page ends.

</body>

</html>

FOOTER;

// display page

echo $html;

?>

Comments
Given an ASCII file, this listing reads it into an array and then runs two functions on
it to make it suitable for display in a Web browser: the htmlentities() function
replaces special characters like ", &, <, and > with the corresponding HTML entity
values, while the nl2br() function helps to retain the original formatting of the
text by converting newline characters to HTML
 elements. The HTML-ized
content is surrounded with the standard HTML header and footer markup.

 2 8 4 P H P P r o g r a m m i n g S o l u t i o n s

TIP

If the ASCII file contains hyperlinks, you can convert them to HTML anchor elements with the
technique outlined in the listing in “7.4: Activating Embedded URLs.”

7.23 Generating Clean ASCII
Text from HTML Markup

Problem
You want to strip the HTML tags from a Web page to generate a “clean” ASCII
version.

Solution
Use PHP’s strip_tags() and html_entity_decode() functions to turn HTML
markup into plain ASCII text:

<pre>

<?php

// read URL contents into a string

$html = file_get_contents("page.html") or die ("Cannot open URL");

// strip out HTML tags

// replace HTML entities with their ASCII counterparts

$ascii = html_entity_decode(strip_tags($html));

// compress multiple lines to a single like

$ascii = preg_replace("/([\r\n])[\s]+/", "\\1", trim($ascii));

// display ASCII

echo $ascii;

?>

</pre>

Comments
In this listing, PHP’s file_get_contents() function is used to read the HTML
source of a Web page into a string and the strip_tags() function is then used to
remove all HTML and PHP code from the string. The html_entity_decode()
function, new in PHP 5.x, is then used to convert HTML entities into their ASCII

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 8 5

equivalents, and the preg_replace() and trim() functions are used to remove
extra whitespace from the string. The end result is a “clean” ASCII version of the
original Web page.

7.24 Generating an HTML Tag Cloud

Problem
You want to build a tag cloud to visually display the frequency of tag occurrence on
your Web pages.

Solution
Calculate the frequency of each tag’s appearance and use this to determine how large
a space it occupies in the cloud relative to other tags:

<html>

<head>

<style type="text/css">

 span { padding: 5px; }

 .smallest { font-size: 10pt; }

 .small { font-size: 15pt; }

 .medium { font-size: 20pt; }

 .large { font-size: 25pt; }

 .largest { font-size: 30pt; }

</style>

</head>

<body>

<?php

// initialize array for tag information

$tags = array();

// query database for tags

$connection = mysql_connect("localhost", "user", "pass")↵
or die ("Unable to connect!");

mysql_select_db("db1") or die ("Unable to select database!");

$query = "SELECT tag, tagCount FROM tags ORDER BY tag";

$result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

 2 8 6 P H P P r o g r a m m i n g S o l u t i o n s

// process query results, convert to associative array

if (mysql_num_rows($result) > 0) {

 while ($row = mysql_fetch_assoc($result)) {

 $tags[$row['tag']] = $row['tagCount'];

 }

}

// close connection

mysql_close($connection);

// get max/min tag frequency and range

// calculate "bins" for font sizes

$max = max($tags);

$min = min($tags);

$diff = $max-$min;

$stepVal = round($diff/5);

// iterate through tag list

// decide which font size to use

// based on tag frequency

foreach ($tags as $tag => $count) {

 switch ($count) {

 case ($count <= ($min + $stepVal)):

 echo "↵
$tag ↵
";

 break;

 case ($count <= ($min + $stepVal*2)):

 echo "↵
$tag ↵
";

 break;

 case ($count <= ($min + $stepVal*3)):

 echo "↵
$tag ↵
";

 break;

 case ($count <= ($min + $stepVal*4)):

 echo "↵
$tag ↵

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 8 7

";

 break;

 case ($count <= ($min + $stepVal*5)):

 echo "↵
$tag ↵
";

 break;

 }

}

?>

</body>

</html>

Comments
A tag cloud is a visual representation of how often particular tags occur in a Web
page or application. More frequently occurring tags are typically rendered in a larger
font, and are usually hyperlinked to appropriate Web pages. Tag clouds thus provide
an easy way to gauge the popularity of particular tags, and are most frequently seen
on community-oriented sites such as Flickr and Digg.

To generate a tag cloud, it is necessary to first have a list of unique tags, as well as
a count of how frequently each appears. For simplicity, this listing assumes that this
data is available in the following MySQL database table:

+-----------+----------+---------------------+

| tag | tagCount | tagCountLastUpdate |

+-----------+----------+---------------------+

| Wharton | 112 | 2006-10-27 23:04:53 |

| Stanford | 232 | 2006-10-27 23:05:07 |

| Harvard | 225 | 2006-10-27 23:05:25 |

| Oxford | 73 | 2006-10-27 23:05:36 |

| Cambridge | 87 | 2006-10-27 23:05:44 |

| NYU | 187 | 2006-10-27 23:06:09 |

| Yale | 54 | 2006-10-27 23:06:28 |

| Berkeley | 190 | 2006-10-27 23:06:39 |

| MIT | 211 | 2006-10-27 23:07:00 |

+-----------+----------+---------------------+

The preceding listing begins by obtaining a list of tags and their corresponding
frequency, via a SELECT query to the database table shown previously. The results of

 2 8 8 P H P P r o g r a m m i n g S o l u t i o n s

the query are turned into a PHP associative array named $tags with elements of the
form (tag => frequency). PHP’s max() and min() functions are then used to
obtain the highest and lowest frequency values, and calculate the range between them.

For easy visual differentiation, five sizes of font will be used to render the tag
cloud. The frequency range calculated in the previous step is therefore divided by
five to obtain “bins” into which each tag will be placed. A foreach() loop is then
used to iterate over the $tags array; the loop checks each tag’s frequency, compares
it to the size “bins” to decide which one is most appropriate, and then generates
appropriate HTML and CSS code to render the tag. Each tag is also hyperlinked to
the Wikipedia Web site.

When viewed in a browser, each tag is rendered in a size corresponding to its
frequency, using the CSS rules described for the corresponding bin. Figure 7-9
provides an example of what the output might look like:

Figure 7-9 A dynamically generated tag cloud

 C h a p t e r 7 : W o r k i n g w i t h H T M L a n d W e b P a g e s 2 8 9

An alternative approach is to use PEAR’s HTML_TagCloud class, which provides
prebuilt methods for rendering tags based on their frequency. Here’s an example of
this in action:

<?php

// include TagCloud class

include "HTML/TagCloud.php";

// initialize object

$cloud = new HTML_TagCloud(50,30);

// query database for tags

$connection = mysql_connect("localhost", "user", "pass")↵
or die ("Unable to connect!");

mysql_select_db("db1") or die ("Unable to select database!");

$query = "SELECT tag, tagCount FROM tags";

$result = mysql_query($query)↵
or die ("Error in query: $query. " . mysql_error());

// add element for each tag with frequency

if (mysql_num_rows($result) > 0) {

 while ($row = mysql_fetch_assoc($result)) {

 $cloud->addElement($row['tag'],↵
"http://www.wikipedia.com/wiki/" . $row['tag'], $row['tagCount']);

 }

}

// close connection

mysql_close($connection);

// output tag cloud

print $cloud->buildAll();

?>

Here, a list of tags and their corresponding frequencies is obtained via a SELECT
query to the database, as before. The class’ addElement() method is then used to
attach each tag, with its frequency, to the tag cloud. The buildAll() method then
performs the necessary calculations and renders the cloud using different font sizes.
Notice that the range of allowed font sizes is specified in the class constructor.

TIP

Read more about tag clouds at http://en.wikipedia.org/wiki/Tag_cloud.

This page intentionally left blank

291

CHAPTER

8
Working with Forms,

 Sessions, and Cookies
IN THIS CHAPTER:
 8.1 Generating Forms
 8.2 Processing Form Input
 8.3 Combining a Form and Its Result Page
 8.4 Creating Drop-Down Lists
 8.5 Creating Dependent Drop-Down Lists
 8.6 Validating Form Input
 8.7 Validating Numbers
 8.8 Validating Alphabetic Strings
 8.9 Validating Alphanumeric Strings
8.10 Validating Credit Card Numbers
8.11 Validating Telephone Numbers
8.12 Validating Social Security Numbers
8.13 Validating Postal Codes
8.14 Validating E-mail Addresses
8.15 Validating URLs
8.16 Uploading Files Through Forms
8.17 Preserving User Input Across Form Pages

8.18 Protecting Form Submissions with a CAPTCHA
8.19 Storing and Retrieving Session Data
8.20 Deleting Session Data
8.21 Serializing Session Data
8.22 Sharing Session Data
8.23 Storing Objects in a Session
8.24 Storing Sessions in a Database
8.25 Creating a Session-Based Shopping Cart
8.26 Creating a Session-Based User

Authentication System
8.27 Protecting Data with Sessions
8.28 Storing and Retrieving Cookies
8.29 Deleting Cookies
8.30 Bypassing Protocol Restrictions on Session

and Cookie Headers
8.31 Building GET Query Strings
8.32 Extracting Variables from a URL Path

 2 9 2 P H P P r o g r a m m i n g S o l u t i o n s

One of the most critical things you can do to ensure the stability of your
Web application is to verify the input it receives through online forms.
This might seem trivial, but a failure to build in basic input validation

routines can snowball into serious problems, such as data corruption or inconsistent
calculations.

With this in mind, a good part of this chapter focuses on forms and input
validation: processing form input; validating e-mail addresses, URLs, and credit card
numbers; uploading files through forms; preserving data across multipage forms; and
dynamically generating form elements.

That’s not all, though—unlike many other languages, PHP comes with native
session and cookie management support, making it possible to track individual
client sessions on a Web site and create highly customized Web pages. This chapter
explores these features, discussing how to store and retrieve session variables; set
and delete cookies; customize how session data is stored; authenticate users and
protect pages from unauthorized access; build a session-based shopping cart; and
create persistent objects.

NOTE

You’ll find the SQL code needed to create the database tables in this chapter in the code archive for
this book, at http://www.php-programming-solutions.com .

8.1 Generating Forms

Problem
You want to generate an HTML form using PHP method calls.

Solution
Use PEAR’s HTML_QuickForm class:

<html>

<head></head>

<body>

<?php

// include HTML_QuickForm class

include "HTML/QuickForm.php";

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 2 9 3

// initialize form object

$form = new HTML_QuickForm("pizzaOrder");

// add text input box

$form->addElement("text", "name", "Name:", array("size" => 30));

// add check box

$form->addElement("checkbox", "new_account", "Create an account for me");

// add selection list

$select = $form->addElement("select", "size", "Pizza size:",↵
array("8-inch", "12-inch", "16-inch"));

// add radio button group

$radio[] =& HTML_QuickForm::createElement("radio", null, null,↵
"Deep Dish", "D");

$radio[] =& HTML_QuickForm::createElement("radio", null, null,↵
"Thin and Crisp", "C");

$form->addGroup($radio, "base", "Pizza base:");

// add textarea

$form->addElement("textarea", "comments", "Special requests:");

// add submit button

$form->addElement("submit", null, "Place Order");

// render and display the form

$form->display();

?>

</body>

</html>

Comments
PEAR’s HTML_QuickForm class, available from http://pear.php.net/
package/HTML_QuickForm, is a sophisticated PHP class designed for on-the-fly
form generation. Once an object of the class has been initialized, you can use the
addElement() method to create and attach different types of input elements to the
form. Typically, between three and four arguments are passed to addElement():
the element type, the element name, the element label (or value), and an optional
array of additional attributes or information. Once the elements have been created,
the display() method renders the form in HTML.

Figure 8-1 illustrates the output of this listing.

 2 9 4 P H P P r o g r a m m i n g S o l u t i o n s

See more examples of HTML_QuickForm in the listings in “8-5: Creating
Dependent Drop-Down Lists,” “8-6: Validating Form Input,” “8-16: Uploading Files
Through Forms,” and “8-17: Preserving User Input Across Form Pages.”

TIP

In addition to the standard form input types, the HTML_QuickForm class also provides some
custom built-ins for linking and grouping form elements. Read more about this at http://
pear.php.net/package/HTML_QuickForm, or look at an example in the listing
in “8-5 Creating Dependent Drop-Down Lists.”

8.2 Processing Form Input

Problem
You want to use the data submitted in a form.

Figure 8-1 A Web form

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 2 9 5

Solution
Access the data through the $_POST or $_GET arrays:

<?php

// iterate through POST-ed form data

// display each field and its value

foreach ($_POST as $key => $value) {

 echo "$key = $value";

 echo "
";

}

// display the value of a specific field

echo $_POST['email'];

?>

Comments
Whenever a form is submitted to a PHP script, all variable-value pairs within that
form automatically become available for use within the script through one of two
associative arrays: $_POST or $_GET. It’s easy to iterate through these arrays and
retrieve the submitted values, or even access specific values by key.

NOTE

Remember that data submitted through a form may not necessarily be valid, and it must be
checked before it can be saved or used in a calculation. The listing in “8.6: Validating Form Input”
discusses how you may do this.

TIP

To quickly view data submitted in a form, use the print_r() function with the $_POST
and $_GET arrays, like this:
<?php

print_r($_POST);

?>

8.3 Combining a Form and Its Result Page

Problem
You want to use a single PHP script for both a form and its result page.

 2 9 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use the presence or absence of the form <submit> element to decide whether to
display the form or its result page:

<html>

<head></head>

<body>

<?php

if (!$_POST['submit']) {

// if $_POST['submit'] does not exist

// display initial page

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Enter your age: <input name="age" size="2" maxlength="2">

 <input type="submit" name="submit" value="Go">

 </form>

<?php

} else {

// if $_POST['submit'] exists

// process form data

 $age = $_POST['age'];

 echo ($age >= 21) ? "You're an adult" : "You're a child";

}

?>

</body>

</html>

Comments
Normally, when creating and processing forms in PHP, you would place the
HTML form in one file, and handle form processing through a separate PHP script.
However, with the power of conditional statements at your disposal, you can
combine both pages into one.

To do this, simply assign a name to the form’s <submit> control, and then check
whether the special $_POST container variable contains that name each time the
script runs. If it does, it means that the form has already been submitted, and you
can process the data; if it does not, it means that the user has not submitted the form
and you therefore need to generate the initial unfilled form. Thus, by testing for the
presence or absence of this variable, a clever PHP programmer can use a single PHP
script to generate both the initial form and the output after it has been submitted.

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 2 9 7

Notice also the use of the $_SERVER['PHP_SELF'] variable in the form’s action
element; this variable always holds the path and name of the currently executing script
and ensures that the form submits user input back to itself (a so-called postback).

NOTE

You can also do this with HTML_QuickForm. Look at the listing in “8.6: Validating Form Input” for
an example.

8.4 Creating Drop-Down Lists

Problem
You want to create a drop-down list of options from an array.

Solution
Use a foreach() loop to process the array and convert it to a series of <option>
elements:

<?php

// define array of items for <select>

$colors = array("red", "green", "blue", "orange", "black", "silver");

?>

<html>

<head></head>

<body>

<form>

Color: <select name="color">

<?php

foreach ($colors as $k=>$v) {

 echo "<option value=\"$k\">$v</option>\n";

}

?>

</select>

</form>

</body>

</html>

 2 9 8 P H P P r o g r a m m i n g S o l u t i o n s

Comments
To dynamically generate a drop-down option list in a form, store the options in an
array and use PHP’s foreach() loop to iterate through the array and print HTML
<option> elements corresponding to its contents.

If you prefer to do this using pure PHP instead of a mixture of HTML code and
PHP functions calls, use PEAR’s HTML_QuickForm class, available from http://
pear.php.net/package/HTML_QuickForm. This class enables you to add a
drop-down list with the addElement() method, and specify the list items as an
input argument to the method. Take a look:

<html>

<head></head>

<body>

<?php

// include HTML_QuickForm class

include "HTML/QuickForm.php";

// initialize form object

$form = new HTML_QuickForm("colors");

// define array of items for <select>

$colors = array("red", "green", "blue", "orange", "black", "silver");

// add <select> element

$form->addElement("select", "color", "Color:", $colors);

// render and display

$form->display();

?>

</body>

</html>

To create drop-down lists that dynamically change their contents on selection, see
the listing in “8.5: Creating Dependent Drop-Down Lists.”

8.5 Creating Dependent Drop-Down Lists

Problem
You want to create a series of dependent drop-down lists, such that a choice in one
alters the available choices in another.

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 2 9 9

Solution
Use PEAR’s HTML_QuickForm class:

<html>

<head></head>

<body>

<?php

// include HTML_QuickForm class

include "HTML/QuickForm.php";

// initialize form object

$form = new HTML_QuickForm("storeFinder");

// define array of items for parent <select>

$firstLevel = array();

$firstLevel[1] = "A-H";

$firstLevel[2] = "I-P";

$firstLevel[3] = "Q-Z";

// define array of items for child <select>

$secondLevel = array();

$secondLevel[1][1] = "Apparel";

$secondLevel[1][2] = "Cosmetics";

$secondLevel[2][1] = "Jewelery";

$secondLevel[2][2] = "Linen";

$secondLevel[2][3] = "Pets";

$secondLevel[3][1] = "Shoes";

// add hierarchical <select> element

$select =& $form->addElement("hierselect", "store", "Store:");

// attach parent and child data

$select->setMainOptions($firstLevel);

$select->setSecOptions($secondLevel);

// render and display

$form->display();

?>

</body>

</html>

 3 0 0 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PEAR’s HTML_QuickForm class, available from http://pear.php.net/
package/HTML_QuickForm, comes with a special built-in element, hierselect,
which is designed specifically to create dependent drop-down lists in forms.

Here, the item choices for both primary and secondary drop-down lists
are stored in arrays, with the index numbers of the primary array serving as
keys to the corresponding items in the multidimensional secondary array. The
setMainOptions() and setSecOptions() methods are used to link the arrays
to the <select> object. The display() method renders the form, together with
the client-side code necessary to change the contents of the secondary drop-down list
once a selection is made from the primary one.

8.6 Validating Form Input

Problem
You want to validate the data submitted in a form.

Solution
Check the submitted data using either built-in or custom data validation routines, and
only proceed to use it if it’s valid:

<html>

<head></head>

<body>

<?php

if (!$_POST['submit']) {

 // not submitted

 // display form

?>

 <form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

 Username:
 <input type="text" name="username">

 Password (6 or more characters):
↵
 <input type="password" name="password">

 E-mail:
 <input type="text" name="email">

 Age:
<input type="text" name="age" size="2">

 <input type="submit" name="submit">

 </form>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 0 1

<?php

} else {

 // submitted

 // initialize array to hold validation errors

 $errorList = array();

 // check if required input is present

 if (!isset($_POST['username']) || ↵
trim($_POST['username']) == "") {

 $errorList[] = "ERROR: Missing value 'username'";

 }

 // check if input is of correct type

 if (!is_numeric($_POST['age'])) {

 $errorList[] = "ERROR: Incorrect data type for value 'age'";

 }

 // check if input is of correct length

 if (strlen($_POST['password']) < 6) {

 $errorList[] = "ERROR: Incorrect length for value 'password'";

 }

 // check if input conforms to a pattern

 if (!eregi("^([a-z0-9_-]|\.)+@(([a-z0-9_-])+\.)+[a-z]↵
{2,6}$", $_POST['email'])) {

 $errorList[] = "ERROR: Incorrect format for value 'email'";

 }

 // check to see if any validation errors occurred

 if (sizeof($errorList) > 0) {

 // if errors occurred

 // display error list

 // and terminate script processing

 echo "Please review and correct the following errors:
";

 foreach ($errorList as $e) {

 echo "$e
";

 }

 } else {

 // if no errors occurred

 // process input

 // for example, save to a database or file

 3 0 2 P H P P r o g r a m m i n g S o l u t i o n s

 // display success message

 echo "Thank you for your submission";

 }

}

?>

</body>

</html>

Comments
When dealing with form input, many novice programmers immediately save the
submitted data to a database, or use it in a calculation. This is a serious mistake, as
there is no guarantee that the data submitted through a form is valid. Therefore, to
avoid errors or database corruption, form input must always be tested for validity
before it is used.

The previous listing illustrates the basic procedure to validate form input:

� Test each input value for validity using either a built-in or custom function and
add any validation errors to an error stack (here, a simple PHP array).

� Once all the input values have been tested, check the error stack.

� If the error stack is empty, it implies that some of the data is invalid. Display a
list of the errors, and terminate processing.

� If the error stack is not empty, it implies that all of the input is valid, and you
can safely use it for further processing.

PHP offers a number of built-in functions to test form input. The previous listing
illustrates some of the common ones, and it’s always possible to roll your own as
well (see the listings in “8.7: Validating Numbers” to “8.15: Validating URLs” for
some ideas).

NOTE

It’s common practice to use client-side scripting languages such as JavaScript or VBScript for client-
side input validation. However, this type of client-side validation is not foolproof—if a user turns
off JavaScript in the client, all your client-side code will become nonfunctional. That’s why it’s a
good idea to couple client-side validation (which is faster) with server-side validation (which is
more secure).

An alternative approach, and one that will appeal to fans of Object-Oriented
Programming (OOP), is to use the PEAR HTML_QuickForm class, available from
http://pear.php.net/package/HTML_QuickForm. HTML_QuickForm

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 0 3

comes with numerous built-in input validation rules that significantly ease the task
of validating form input. To illustrate this, compare the previous listing with the code
that follows, which is equivalent:

<html>

<head></head>

<body>

<?php

// include HTML_QuickForm class

include "HTML/QuickForm.php";

// initialize form object

$form = new HTML_QuickForm("userReg");

// add text input boxes

$form->addElement("text", "name", "Name:", array("size" => 30));

$form->addElement("password", "password", "Password:", ↵
array("size" => 30));

$form->addElement("text", "age", "Age:", array("size" => 2));

$form->addElement("text", "email", "E-mail address:");

// add submit button

$form->addElement("submit", null, "Submit");

// run filters on input values

$form->applyFilter(array("name", "password", "age", "email"), "trim");

// define input validation rules

$form->addRule("name", "ERROR: Missing value", "required");

$form->addRule("password", "ERROR: Missing value", "required");

$form->addRule("password", "ERROR: Incorrect length", "minlength", 6);

$form->addRule("age", "ERROR: Missing value", "required");

$form->addRule("age", "ERROR: Incorrect data type", "numeric");

$form->addRule("email", "ERROR: Missing value", "required");

$form->addRule("email", "ERROR: Incorrect format", "email");

// validate input

if ($form->validate()) {

 // if valid, freeze the form

 $form->freeze();

 // retrieve submitted data as array

 $data = $form->exportValues();

 3 0 4 P H P P r o g r a m m i n g S o l u t i o n s

 // process input

 // for example, save to a database or file

 // display success message and exit

 echo "Thank you for your submission";

 exit;

}

// render and display the form

$form->display();

?>

</body>

</html>

Here, the addRule() method is used to attach built-in validation rules
("required", "minlength", "email") to each form element, together with the
error message to be displayed if the input fails validation. Once the validate()
method is called, HTML_QuickForm tests each input value using the defined rules
and, in the event of validation errors, redisplays the form with the flawed values
highlighted. Only when all the form values are valid and the validate() method
returns true, will the script proceed to use the submitted data.

TIP

For a complete list of HTML_QuickForm’s built-in input tests, check the online manual at
http://pear.php.net/package/HTML_QuickForm.

8.7 Validating Numbers

Problem
You want to test if a value is a number.

Solution
Use a regular expression to check if the supplied value contains only numbers,
a negative sign (optional), and a decimal point (optional):

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 0 5

<?php

// function to validate an integer

function validateInteger($str) {

 // test if input is an integer, optionally signed

 return preg_match("/^-?([0-9])+$/", $str);

}

// function to validate a float

function validateFloat($str) {

 // test if input is a floating-point number, optionally signed

 return preg_match("/^-?([0-9])+([\.|,]([0-9])*)?$/", $str);

}

// result: "Is an integer"

echo validateInteger("123456") ? "Is an integer" : "Is not an integer";

// result: "Is not an integer"

echo validateInteger("123456.506") ? "Is an integer" : ↵
"Is not an integer";

// result: "Is not an integer"

echo validateInteger("12a3456.506") ? "Is an integer" : ↵
"Is not an integer";

// result: "Is a float"

echo validateFloat("123456") ? "Is a float" : "Is not a float";

// result: "Is a float"

echo validateFloat("123456.506") ? "Is a float" : "Is not a float";

?>

Comments
While PHP does offer the built-in is_numeric(), is_float(), and is_int()
functions to check numeric input, you might often prefer to implement custom
number-checking routines for more stringent validation. This listing illustrates two
such validation routines, validateInteger() and validateFloat(), useful
for testing the format of integer and decimal input, respectively. In both cases, the
regular expression pattern matches numbers in the range 0-9, with an optional sign
prefix; in the latter case, the pattern also supports a decimal point and following
values.

 3 0 6 P H P P r o g r a m m i n g S o l u t i o n s

An alternative is to use PHP’s ctype_digit() function, which returns true only
if every character of the supplied input argument is a number. As the next listing
demonstrates, it thus returns false for every value except positive integers:

<?php

// result: "Is a number"

echo ctype_digit("123456") ? "Is a number" : "Is not a number";

// result: "Is not a number"

echo ctype_digit("123456.506") ? "Is a number" : "Is not a number";

// result: "Is not a number"

echo ctype_digit("12a3456.506") ? "Is a number" : "Is not a number";

?>

8.8 Validating Alphabetic Strings

Problem
You want to test if a value is an alphabetic string.

Solution
Use a regular expression to check if the supplied value contains only alphabetic
characters:

<?php

function validateAlpha($str) {

 // test if input contains only alphabetic characters

 return preg_match("/^[a-z]+$/i", $str);

}

// result: "Is alphabetic"

echo validateAlpha("abc") ? "Is alphabetic" : "Is not alphabetic";

// result: "Is not alphabetic"

echo validateAlpha("abc1") ? "Is alphabetic" : "Is not alphabetic";

?>

Comments
PHP lets you test strings with the is_string() function, but this function doesn’t
distinguish between alphabetic, alphanumeric, and numeric strings. If you’d like

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 0 7

more stringent validation, consider the validateAlpha() function in this listing,
which only passes strings containing alphabetic characters (strings with numbers
or symbols will be rejected). Notice the function’s use of the i modifier, which
performs case-insensitive matching.

An alternative is to use PHP’s ctype_alpha() function, which returns true only
if every character of the supplied input argument is an alphabetic character. Here’s
an example:

<?php

// result: "Is alphabetic"

echo ctype_alpha("abc") ? "Is alphabetic" : "Is not alphabetic";

// result: "Is not alphabetic"

echo ctype_alpha("abc1") ? "Is alphabetic" : "Is not alphabetic";

?>

8.9 Validating Alphanumeric Strings

Problem
You want to test if a value is an alphanumeric string.

Solution
Use a regular expression to check if the supplied value contains only alphabetic
characters and numbers:

<?php

function validateAlphaNum($str) {

 // test if input contains alphabetic and numeric characters

 return preg_match("/^[a-z0-9]*$/i", $str);

}

// result: "Is an alphabetic string"

echo validateAlphaNum("abc") ? "Is an alphabetic string" :↵
"Is not an alphabetic string";

// result: "Is an alphabetic string"

echo validateAlphaNum("abc1") ? "Is an alphabetic string" :↵
"Is not an alphabetic string";

 3 0 8 P H P P r o g r a m m i n g S o l u t i o n s

// result: "Is not an alphabetic string"

echo validateAlphaNum("abc?") ? "Is an alphabetic string" :↵
"Is not an alphabetic string";

?>

Comments
PHP lets you test strings with the is_string() function, but this function doesn’t
distinguish between alphabetic, alphanumeric, and numeric strings. If you need more
precise validation, consider the validateAlphaNum() function in this listing,
which tests strings for alphabetic or numeric characters and rejects those containing
symbols or special characters outside the alphabetic or numeric range. Notice also
the function’s use of the i modifier, for case-insensitive matching.

You could also perform this check with PHP’s ctype_alnum() function, which
returns true only if every character of the supplied input argument belongs to either
the alphabetic or numeric set. Here’s an example:

<?php

// result: "Is an alphabetic string"

echo ctype_alnum("abc") ? "Is an alphabetic string" :↵
"Is not an alphabetic string";

// result: "Is an alphabetic string"

echo ctype_alnum("abc1") ? "Is an alphabetic string" :↵
"Is not an alphabetic string";

// result: "Is not an alphabetic string"

echo ctype_alnum("abc?") ? "Is an alphabetic string" : ↵
"Is not an alphabetic string";

?>

8.10 Validating Credit Card Numbers

Problem
You want to validate the format of a credit card number or expiration date.

Solution
Use a regular expression to test the format of the supplied number and date:

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 0 9

<?php

// function to validate a credit card number

function validateCCNum($str) {

 // test if input is of the form dddddddddddddddd

 return preg_match("/^\d{16}$/" ,$str);

}

// function to validate a credit card expiry date

function validateCCExpDate($str) {

 // test if input is of the form mm/yyyy

 return preg_match("/(0[1-9]|1[0-2])\/20[0-9]{2}$/", $str);

}

// result: "Is a valid 16-digit number"

echo validateCCNum("4476269198125132") ? "Is a valid 16-digit number" :↵
"Is not a 16-digit number";

// result: "Is a valid date string"

echo validateCCExpDate("12/2013") ? "Is a valid date string" :↵
"Is an invalid date string";

?>

Comments
Credit card numbers are typically sixteen digits long, and their expiration dates
are usually in the format mm/yyyy. In this listing, the validateCCNum() and
validateCCExpDate() both contain relatively trivial regular expressions to
test input values and see if they conform to these patterns. Note that the regular
expression used in the validateCCExpDate() function is somewhat stringent to
ensure that only month values in the range 01–12 are accepted.

For more stringent validation, you might want to consider using PEAR’s
Payment_Process or Validate classes, available from http://pear.php
.net/package/Payment_Process and http://pear.php.net/package/
Validate_Finance_CreditCard, respectively. Both classes include intelligence
to check the validity of a credit card number, using either the Luhn algorithm
or specific knowledge of the valid number range for each card brand. Here’s an
example:

<?php

// include Payment_Process class

include "Payment/Process.php";

 3 1 0 P H P P r o g r a m m i n g S o l u t i o n s

// initialize object

$card = &Payment_Process_Type::factory("CreditCard");

// set card data

$card->type = PAYMENT_PROCESS_CC_MASTERCARD;

$card->cardNumber = "5548111111111111";

$card->expDate = "12/2005";

// result: "Is a properly-formatted card number"

echo Payment_Process_Type::isValid($card) ? "Is a properly-formatted↵
card number" : "Is an improperly-formatted card number";

?>

<?php

// include Validate class

include "Validate/Finance/CreditCard.php";

// test credit card number using Luhn algorithm

// result: "Is an improperly-formatted card number"

echo Validate_Finance_CreditCard::type("5548111111121111", ↵
"AmericanExpress") ? "Is a properly-formatted card number" : ↵
"Is an improperly-formatted card number";

// result: "Is a properly-formatted card number"

echo Validate_Finance_CreditCard::type("5548111111121111",↵
"MasterCard") ? "Is a properly-formatted card number" :↵
"Is an improperly-formatted card number";

?>

TIP

Read more about the Luhn algorithm at http://www.webopedia.com/TERM/L/
Luhn_formula.html.

8.11 Validating Telephone Numbers

Problem
You want to validate the format of an international telephone number.

Solution
Use a regular expression to test the format of the supplied value:

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 1 1

<?php

// function to validate an international phone number

function validateIntlPhone($str) {

 // test if input is of the form +cc aa nnnn nnnn

 return preg_match("/^(\+|00)[1-9]{1,3}(\.|\s|-)?([0-9]{1,5}↵
(\.|\s|-)?){1,3}$/", $str);

}

// result: "Is a properly-formatted phone number"

echo validateIntlPhone("+1 301 111 1111") ? "Is a properly-formatted↵
phone number" : "Is an improperly-formatted phone number";

// result: "Is a properly-formatted phone number"

echo validateIntlPhone("0091-11-2123-7574") ? "Is a properly-formatted↵
phone number" : "Is an improperly-formatted phone number";

// result: "Is a properly-formatted phone number"

echo validateIntlPhone("+612 9555-5555") ? "Is a properly-formatted↵
phone number" : "Is an improperly-formatted phone number";

// result: "Is an improperly-formatted phone number"

echo validateIntlPhone("12346") ? "Is a properly-formatted phone↵
number" : "Is an improperly-formatted phone number";

?>

Comments
There are numerous ways of writing an international telephone number, and the
previous regular expression tries to match all of them. The expression used here
expects a number with country and area code, and enables you to prefix the country
code with a + symbol or a pair of zeroes; separate the country, area, and local
codes with spaces, periods, or hyphens; and write the local number as a single set
of numbers or split it into spaced blocks.

If you find this regular expression a little too generous, you can alter it to be
more restrictive, or to only support local numbers. As an illustration, consider the
following variants, which validate local U.S. and Indian telephone numbers only:

<?php

// function to validate a US phone number

function validateUSPhone($str) {

 // test if input is of the form aaa-nnn-nnnn

 return preg_match("/^[2-9]\d{2}-\d{3}-\d{4}$/", $str);

}

 3 1 2 P H P P r o g r a m m i n g S o l u t i o n s

// function to validate an Indian phone number

function validateIndiaPhone($str) {

 // test if input is of the form (0aa) nnnn nnnn

 return preg_match("/^\(0\d{2}\)\s?\d{8}$/", $str);

}

// result: "Is a properly-formatted phone number"

echo validateUSPhone("301-111-1111") ? "Is a properly-formatted↵
phone number" : "Is an improperly-formatted phone number";

// result: "Is a properly-formatted phone number"

echo validateIndiaPhone("(022) 22881111") ? "Is a properly-formatted↵
phone number" : "Is an improperly-formatted phone number";

?>

8.12 Validating Social Security Numbers

Problem
You want to validate the format of a U.S. Social Security number.

Solution
Use a regular expression to test the format of the supplied number:

<?php

// function to validate U.S. Social Security number

function validateSSN($str) {

 // test if input is of the form ddd-dd-dddd

 return preg_match("/^\d{3}\-\d{2}\-\d{4}$/", $str);

}

// result: "Is a properly-formatted SSN"

echo validateSSN("123-45-6789") ? "Is a properly-formatted SSN" :↵
"Is an improperly-formatted SSN";

// result: "Is an improperly-formatted SSN"

echo validateSSN("123456789") ? "Is a properly-formatted SSN" :↵
"Is an improperly-formatted SSN";

?>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 1 3

Comments
Social Security numbers in the USA are usually nine digits long, with hyphens after
the third and fifth digits. This listing simply encapsulates this pattern into a regular
expression, and uses the preg_match() function to test input against this pattern.

8.13 Validating Postal Codes

Problem
You want to validate the format of a postal (“zip”) code.

Solution
Use a regular expression to test the format of the supplied value:

<?php

// function to validate a zip code

function validateZip($str) {

 // test if input is of the form dddddd

 return preg_match("/^\d{6}$/" ,$str);

}

// result: "Is a properly-formatted zip code"

echo validateZip("123456") ? "Is a properly-formatted zip code" :↵
"Is an improperly-formatted zip code";

// result: "Is an improperly-formatted zip code"

echo validateZip("56456") ? "Is a properly-formatted zip code" :↵
"Is an improperly-formatted zip code";

?>

Comments
Postal codes differ from country to country, so there’s no one-size-fits-all solution
to the problem. Usually, you will need to customize the regular expression to local
conventions before you can use the validateZip() function. This listing assumes
a postal code of six digits; however, it’s quite likely that you might have a nine-digit
code separated with a hyphen (as in the USA) or a six-character code containing

 3 1 4 P H P P r o g r a m m i n g S o l u t i o n s

both letters and numbers (as in the UK). Here are some variants illustrating these
local conventions:

<?php

// function to validate a US zip code

function validateUSZip($str) {

 // test if input is of the form dddd-ddddd

 return preg_match("/^\d{5}(-\d{4})?$/" ,$str);

}

// function to validate a UK zip code

function validateUKZip($str) {

 // test if input is of the form ssdd dss

 return eregi("^[a-z]{1,2}[0-9]{1,2}([a-z])?[[:space:]]?[0-9][a-z]↵
{2}$" ,$str);

}

// result: "Is a properly-formatted US zip code"

echo validateUSZip("10113-1243") ? "Is a properly-formatted US↵
zip code" : "Is an improperly-formatted US zip code";

// result: "Is a properly-formatted UK postcode"

echo validateUKZip("NW3 5ED") ? ↵
"Is a properly-formatted UK postcode" :↵
"Is an improperly-formatted UK postcode";

?>

8.14 Validating E-mail Addresses

Problem
You want to validate the format of an e-mail address.

Solution
Use a regular expression to test the format of the supplied value:

<?php

// function to validate

// an e-mail address

function validateEmailAddress($str) {

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 1 5

 // test if input matches e-mail pattern

 return eregi("^([a-z0-9_-])+([\.a-z0-9_-])*@([a-z0-9-])+↵
(\.[a-z0-9-]+)*\.([a-z]{2,6})$", $str);

}

// result: "Is a properly-formatted e-mail address"

echo validateEmailAddress("joe@some.domain.com") ?↵
"Is a properly-formatted e-mail address" : "Is an improperly-formatted ↵
e-mail address";

// result: "Is an improperly-formatted e-mail address"

echo validateEmailAddress("joe@dom.") ?↵
"Is a properly-formatted e-mail address" : "Is an improperly-formatted ↵
e-mail address";

?>

Comments
E-mail address validation is one of the most common types of input validation, and
there’s no shortage of regular expressions available online to match e-mail address
patterns. The previous listing uses one of the more stringent patterns, restricting the
range of characters in both username and domain parts and requiring the length of
the top-level domain to be between two and six characters.

An alternative to rolling your own regular expression is to use the one provided
by the PEAR Validate class, available from http://pear.php.net/package/
Validate. The following listing illustrates this:

<?php

// include Validate class

include "Validate.php";

// test e-mail address

// result: "Is a properly-formatted e-mail address"

echo Validate::email("john@doe.info") ? "Is a properly-formatted e-mail↵
address" : "Is an improperly-formatted e-mail address";

// result: "Is an improperly-formatted e-mail address"

echo Validate::email("#$@nothing") ? "Is a properly-formatted e-mail↵
address" : "Is an improperly-formatted e-mail address";

?>

 3 1 6 P H P P r o g r a m m i n g S o l u t i o n s

TIP

Looking for a more sophisticated regex? Try this one:
<?php

function validateEmailAddress($str) {

 // test if input matches e-mail pattern

 return preg_match(‘/[^\x00-\x20()<>@,;:\\”.

[\]\x7f-\xff]+(?:\.[^\x00-\x20()<>@,;:\\”.[\]

\x7f-\xff]+)*\@[^\x00-\x20()<>@,;:\\”.[\]

\x7f-\xff]+(?:\.[^\x00-\x20()<>@,;:\\”.[\]

\x7f-\xff]+)+/i’, $str);

}

?>

8.15 Validating URLs

Problem
You want to validate the format of a URL.

Solution
Use a regular expression to test the format of the supplied value:

<?php

// function to validate a URL

function validateUrl($str) {

 // test if input matches URL pattern

 return preg_match("/^(http|https|ftp):\/\/([a-z0-9]([a-z0-9_-]*↵
[a-z0-9])?\.)+[a-z]{2,6}\/?([a-z0-9\?\._-~&#=+%]*)?/", $str);

}

// result: "Is valid"

echo validateUrl("http://www.example.com/html/index.php") ? ↵
"Is valid" : "Is invalid";

// result: "Is valid"

echo validateUrl("http://www.some.site.info") ? ↵
"Is valid" : "Is invalid";

// result: "Is invalid"

echo validateUrl("http://some") ? "Is valid" : "Is invalid";

?>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 1 7

Comments
URLs come in all shapes and colors and, as with e-mail addresses, you can be
generous or strict in the regular expression you choose to validate them. The
expression used here restricts the protocol to HTTP, HTTPS, or FTP, requires the
top-level domain to be between two and six characters long, and supports trailing
path/file names or anchors.

8.16 Uploading Files Through Forms

Problem
You want to upload a file through a form.

Solution
Use PHP’s built-in file upload capabilities, which support POST-ing a file in a form
and accessing it via the $_FILES array:

<html>

<head></head>

<body>

<?php

// display file upload form

if (!$_POST['submit']) {

?>

 <form enctype="multipart/form-data"↵
action="<?=$_SERVER['PHP_SELF']?>" method="post">

 <input type="hidden" name="MAX_FILE_SIZE" value="8000000">

 Select file:

 <input type="file" name="data">

 <input type="submit" name="submit" value="Upload File">

 </form>

<?php

} else {

 // check uploaded file size

 if ($_FILES['data']['size'] == 0) {

 die("ERROR: Zero byte file upload");

 }

 // check if file type is allowed (optional)

 $allowedFileTypes = array("image/gif", "image/jpeg", ↵
"image/pjpeg");

 3 1 8 P H P P r o g r a m m i n g S o l u t i o n s

 if (!in_array($_FILES['data']['type'], $allowedFileTypes)) {

 die("ERROR: File type not permitted");

 }

 // check if this is a valid upload

 if (!is_uploaded_file($_FILES['data']['tmp_name'])) {

 die("ERROR: Not a valid file upload");

 }

 // set the name of the target directory

 $uploadDir = "./uploads/";

 // copy the uploaded file to the directory

 move_uploaded_file($_FILES['data']['tmp_name'], $uploadDir . ↵
$_FILES['data']['name']) or die("Cannot copy uploaded file");

 // display success message

 echo "File successfully uploaded to " . $uploadDir .↵
 $_FILES['data']['name'];

}

?>

</body>

</html>

Comments
PHP significantly simplifies the task of uploading files through a Web form, by
exposing a special $_FILES array which contains information on files sent through
the POST method.

There are two components to this listing, the file upload form and the business
logic that processes the submitted form.

 1. The form must be submitted using POST, and must contain the
enctype="multipart/form-data" attribute, to ensure that the file is
correctly uploaded. The hidden form variable MAX_FILE_SIZE specifies the
maximum allowed upload size, in bytes; files larger than this will be rejected.

 2. Once a file has been uploaded, it is stored in a temporary directory and
information on its size, type, and original and temporary names is saved
to the $_FILES array. The temporary file name is then provided to the
move_uploaded_file() function, which is used to copy the file from the
temporary directory to a new location.

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 1 9

It’s generally considered a good idea to verify the integrity of the upload before
accepting it. Typical checks include ensuring the file is not a zero-byte file with the
'size' key of the $_FILES array, and verifying that the file was indeed uploaded
through a POST operation (and not “injected” into the script artificially by a
malicious user) with the is_uploaded_file() function. You may also choose
to test the file type if your application only allows particular types of files to be
uploaded.

TIP

Don’t use the file extension to determine the file type, as it’s easy to rename an executable file
with a “safe” extension. Instead, use the 'type' key of the $_FILES array to check the
Multipurpose Internet Mail Extensions (MIME) type of the file, and only allow those types you
deem to be safe.

Understanding PHP’s File Upload Variables
There are six important PHP configuration variables influencing POST file uploads:

� "fi le_uploads" This variable, a Boolean, indicates whether or not fi le
uploads should be permitted. Set this to true if your application supports fi le
uploads.

� "max_execution_time" This variable determines the number of
seconds a PHP script can run before it is forcibly terminated by the engine. If
your application expects large fi le uploads, or if a slow network link is used
for the fi le transfer, increase this value to avoid your script automatically
terminating in the middle of a long upload.

� "max_input_time" This variable controls the maximum amount of time
a script has to receive input data, including POST-ed fi les. As with the max_
execution_time variable, increase this value if you anticipate large fi les or
slow transfers.

� "upload_max_fi lesize" This variable determines the maximum size of
an uploaded fi le, and it gets higher priority than the hidden MAX_FILE_SIZE
form fi eld.

� "post_max_size" This variable determines the maximum size of data
PHP can accept in a single POST request, including fi le uploads. This should
be at least equal to the value defi ned in "upload_max_fi lesize"; in most
cases, it is larger.

� "upload_tmp_dir" This variable determines the temporary directory
used for uploaded fi les. It defaults to the system’s temporary directory.

 3 2 0 P H P P r o g r a m m i n g S o l u t i o n s

In case you’re confused by the interaction between these variables, think of it
this way: "upload_max_filesize" applies to each of the files being uploaded
to the server and "post_max_size" defines how many of them (or how much of
them) can come through in a single POST request. This is why you’d typically want
"post_max_size" to be larger than "upload_max_filesize".

Users who prefer a more object-oriented approach to file uploads may be
interested in the HTML_QuickForm class, available from http://pear.php
.net/package/HTML_QuickForm. As you will see after comparing the next
listing with the previous one, HTML_QuickForm’s built-in element and rule types
can significantly reduce the code needed to manage and validate a file upload:

<html>

<head></head>

<body>

<?php

// include HTML_Quickform class

include "HTML/QuickForm.php";

// initialize form object

$form = new HTML_QuickForm("uploadFile");

// add file upload element

$file =& $form->addElement("file", "filedata", "Select image file:");

// add submit button

$form->addElement("submit", null, "Upload Image");

// add file input validation rules

$form->addRule("filedata", "Please select a file for↵
upload", "uploadedfile");

$form->addRule("filedata", "Please upload only images",↵
"mimetype", array("image/gif", "image/jpeg", "image/pjpeg"));

// validate file input

if ($form->validate()) {

 // if valid upload

 // move file to upload area

 // print success message

 $uploadDir = "./uploads/";

 if ($file->isUploadedFile()) {

 $info = $file->getValue();

 $file->moveUploadedFile($uploadDir);

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 2 1

 echo "File successfully uploaded to $uploadDir" . ↵
$info['name'];

 } else {

 echo "Not a valid file upload";

 }

 exit;

}

// render and display form

$form->display();

?>

</body>

</html>

When working with uploaded files, the form-processing segment of the script is
only executed after the file has been completely uploaded, and it’s not uncommon
for users to see a blank page while the upload is in progress. So, for large file
uploads, it’s generally a good idea to display some form of task notification to the
user, to indicate that the upload is in progress. This is usually a pop-up window
with a message, but you could also display a progress bar using the PEAR HTML_
Progress2 package first discussed in the listing in “7.10: Charting Task Status with a
Progress Bar.” Here’s how:

<html>

<head></head>

<body>

<?php

// display file upload form

if (!$_POST['submit']) {

 // generate unique ID for this transfer

 $id = md5(uniqid(rand(), true));

?>

 <form enctype="multipart/form-data"↵
action="<?=$_SERVER['PHP_SELF']?>" method="post"↵
onSubmit="javascript:window.open('example03-progress.php?id=<?=$id;?>',↵
'pb', 'height=100,width=200,location=no,menubar=no,↵
resizable=no,scrollbars=no,status=no,toolbar=no');">↵
 <input type="hidden" name="MAX_FILE_SIZE" value="8000000">

 <input type="hidden" name="id" value="<?=$id;?>">

 Select file:

 <input type="file" name="data">

 <input type="submit" name="submit" value="Upload File">

 </form>

 3 2 2 P H P P r o g r a m m i n g S o l u t i o n s

<?php

} else {

 // ensure ID is present

 $id = $_POST['id'];

 if (trim($id) == "") {

 die ("ERROR: No file ID present");

 }

 // upload done

 // write a semaphore file

 // to tell the progress bar window to close

 $fp = fopen("upld$id", "wb") ↵
or die("ERROR: Cannot open semaphore file");

 fclose($fp) or die("ERROR: Cannot close semaphore file");

 // check uploaded file size

 if ($_FILES['data']['size'] == 0) {

 die("ERROR: Zero byte file upload");

 }

 // check if this is a valid upload

 if (!is_uploaded_file($_FILES['data']['tmp_name'])) {

 die("ERROR: Not a valid file upload");

 }

 // set the name of the target directory

 $uploadDir = "./uploads/";

 // copy the uploaded file to the directory

 move_uploaded_file($_FILES['data']['tmp_name'], $uploadDir .↵
 $_FILES['data']['name']) or die("Cannot copy uploaded file");

 // display success message

 echo "File successfully uploaded to " . $uploadDir .↵
$_FILES['data']['name'];

}

?>

</body>

</html>

In this variant, every file upload is associated with a unique ID, generated through
a combination of md5() and uniqid() calls. When the form is submitted, client-
side code is used to open a new window containing the progress bar and passing it

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 2 3

the identifier. Once the form has been successfully uploaded, a semaphore file is
created using the unique ID, to signal the progress bar window to close.

Here’s the code used by the script running in the progress bar window:

<?php

// increase script execution time limit

ini_set('max_execution_time', 600);

// include HTML_Progress class

include "HTML/Progress2.php";

// create objects

$progress = new HTML_Progress2();

// ensure ID is present

$id = $_GET['id'];

if (trim($id) == "") {

 die ("ERROR: No file ID present");

}

// custom handler for progress bar ticks

function customHandler($progressValue, &$obj) {

 // retrieve file transfer ID

 global $id;

 // check for semaphore file

 // if it exists, file upload is complete

 // close this popup

 // if not,

 // sleep 2 seconds and try again

 if (file_exists("upld$id")) {

 unlink("upld$id");

 echo "<script language='javascript'>self.close()</script>";

 } else {

 sleep(2);

 }

}

?>

<html>

<head>

<title>Upload In Progress</title>

 3 2 4 P H P P r o g r a m m i n g S o l u t i o n s

<?php

echo $progress->getStyle(false);

echo $progress->getScript(false);

?>

</head>

<body>

<div id="progress">

<?php

// set bar speed and increment value

$progress->setAnimSpeed(100);

$progress->setIncrement(10);

// place bar in indeterminate mode

$progress->setIndeterminate(true);

// set user-defined function

// this will check when upload is complete

// and switch bar back to indeterminate mode

$progress->setProgressHandler('customHandler');

// initialize progress bar display

$progress->display();

$progress->run();

?>

</div>

</body>

</html>

This script receives the unique file upload ID, and initializes a progress bar
object using the HTML_Progress2 package. It then defines a custom handler for the
progress bar, which checks for the presence of the semaphore file every few seconds.
Once the semaphore file appears, it indicates that the file has been uploaded, and
is thus a signal to the progress window to close. When the window closes, it also
deletes the semaphore file. The file upload ID is used to connect the two scripts, and
serves as an identification tag in an environment where multiple uploads may be
taking place simultaneously.

TIP

Read more about HTML_Progress2 in the listing in “7.10: Charting Task Status with a Progress Bar,”
and on the Web at http://pear.php.net/package/HTML_Progress2.

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 2 5

8.17 Preserving User Input Across Form Pages

Problem
You want to preserve user input across multiple form pages.

Solution
Attach input from a prior form submission to subsequent pages as hidden data:

<html>

<head></head>

<body>

<?php

// function to rewrite submitted values

// as hidden form fields

function importPrevPageData() {

 $hiddenDataStr = "<!-- input carried forward begins -->\n";

 foreach ($_POST as $key => $value) {

 $hiddenDataStr .= "<input type=\"hidden\" name=\"" .↵
htmlentities($key) . "\" value=\"" .↵
htmlentities(stripslashes($value)) . "\">\n";

 }

 $hiddenDataStr .= "<!-- input carried forward ends -->\n";

 echo $hiddenDataStr;

}

// look for the page number

// if not available, assume page 1

$pageID = isset($_POST['pageID']) ? $_POST['pageID'] : 1;

// display pages by number

switch ($pageID) {

 case 1:

?>

 <!-- page 1 -->

 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

 Name:

 <input type="text" name="name" size="30">

 E-mail address:

 3 2 6 P H P P r o g r a m m i n g S o l u t i o n s

 <input type="text" name="email">

 Telephone:

 <input type="text" name="tel" size="10">

 <input type="hidden" name="pageID" ↵
value=<?php echo ($pageID+1); ?>>

 <input type="submit" name="submit" value="Go to Page 2">

 </form>

<?php

 break;

 case 2:

 // perform validation of page 1 data

 // if errors, display error list

 // if no errors, display page 2

?>

 <!-- page 2 -->

 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

 Card type:

 <select name="cctype">

 <option value="V">Visa</option>

 <option value="M">MasterCard</option>

 <option value="A">AmEx</option>

 </select>

 Name on credit card:

 <input type="ccname" name="ccname" size="30">

 Credit card expiration date (MM/YYYY):

 <input type="text" name="ccexp" size="7">

 Email invoice:

 <input type="radio" name="email_invoice" value="Y">Yes

 <input type="radio" name="email_invoice" value="N">No

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 2 7

 <input type="hidden" name="pageID" ↵
value=<?php echo ($pageID+1); ?>>

<?php

 // remove unnecessary form elements

 unset($_POST['submit']);

 unset($_POST['pageID']);

 // import previous form submission

 importPrevPageData();

?>

 <input type="submit" name="submit" value="Place Order">

 </form>

<?php

 break;

 case 3:

 // perform validation of page 2 data

 // if errors, display error list

 // if no errors, display page 3

 // remove unnecessary form elements

 unset($_POST['submit']);

 unset($_POST['pageID']);

 // get all the submitted data as an array

 $data = $_POST;

 // process the data

 // for example, save to a database or file

 print_r($data);

 // print success message

 echo "Thank you for your order";

 break;

}

?>

</body>

</html>

Comments
A basic problem when dealing with forms spanning two or more pages involves
transferring the data entered by the user from one page to the next. To illustrate the

 3 2 8 P H P P r o g r a m m i n g S o l u t i o n s

problem, consider a three-page form that asks for the user’s name (page 1) and
e-mail address (page 2) before saving both to the database (page 3). To avoid errors,
data submitted on the first page must be retained until the third page has completed
processing.

The first solution to this problem involves rewriting the data submitted at each
stage as a series of hidden form elements, and adding them to the next form page.
This carries forward form data from page to page, until it can all be processed on
the final page. You can see how this might work based on the previous listing,
which calls the importPrevPageData() function each page of the form. On
each invocation, importPrevPageData() reads the $_POST array and rewrites
its contents as a series of <input type="hidden" /> elements, which are then
attached to the existing form and carried forward to the next page. On the final page,
the $_POST array will contain the data submitted over all the previous form pages.
This data can then be validated and processed in the usual manner.

The second solution to the problem involves using a session to store the data
submitted at each stage, and processing it all at once on the final page. This is
somewhat less tedious than the previous alternative, mostly because of PHP’s
excellent built-in session handling capabilities, but it can fail if the client browser
lacks (or has disabled) cookie support. Here’s the previous listing, rewritten to
illustrate this approach:

<?php

// function to save submitted values

// as session variables

function importPrevPageData() {

 foreach ($_POST as $key => $value) {

 $_SESSION['form'][$key] = htmlentities(stripslashes($value));

 }

}

// look for the page number

// if not available, assume page 1

$pageID = isset($_POST['pageID']) ? $_POST['pageID'] : 1;

// import previous session

session_start();

?>

<html>

<head></head>

<body>

<?php

// display pages by number

switch ($pageID) {

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 2 9

 case 1:

?>

 <!-- page 1 -->

 <form method="post" ↵
action="<?php echo $_SERVER['PHP_SELF']; ?>">

 Name:

 <input type="text" name="name" size="30">

 E-mail address:

 <input type="text" name="email">

 Telephone:

 <input type="text" name="tel" size="10">

 <input type="hidden" name="pageID" ↵
value=<?php echo ($pageID+1); ?>>

 <input type="submit" name="submit" value="Go to Page 2">

 </form>

<?php

 break;

 case 2:

 // perform validation of page 1 data

 // if errors, display error list

 // if no errors, display page 2

?>

 <!-- page 2 -->

 <form method="post" ↵
action="<?php echo $_SERVER['PHP_SELF']; ?>">

 Card type:

 <select name="cctype">

 <option value="V">Visa</option>

 <option value="M">MasterCard</option>

 <option value="A">AmEx</option>

 </select>

 Name on credit card:

 <input type="ccname" name="ccname" size="30">

 3 3 0 P H P P r o g r a m m i n g S o l u t i o n s

 Credit card expiration date (MM/YYYY):

 <input type="text" name="ccexp" size="7">

 Email invoice:

 <input type="radio" name="email_invoice" value="Y">Yes

 <input type="radio" name="email_invoice" value="N">No

 <input type="hidden" name="pageID" ↵
value=<?php echo ($pageID+1); ?>>

<?php

 // remove unnecessary form elements

 unset($_POST['submit']);

 unset($_POST['pageID']);

 // add previous submission to session

 importPrevPageData();

?>

 <input type="submit" name="submit" value="Place Order">

 </form>

<?php

 break;

 case 3:

 // perform validation of page 2 data

 // if errors, display error list

 // if no errors, display page 3

 // remove unnecessary form elements

 unset($_POST['submit']);

 unset($_POST['pageID']);

 // add previous submission to session

 importPrevPageData();

 // get all the submitted data from the session

 $data = $_SESSION['form'];

 // process the data

 // for example, save to a database or file

 print_r($data);

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 3 1

 // print success message

 echo "Thank you for your order";

 break;

}

?>

</body>

</html>

Here, the importPrevPageData() function merely iterates through the
$_POST array on each invocation, creating a copy of the POST-ed data in the
$_SESSION['form'] array. On the final page, the $_SESSION['form'] array
will contain the data submitted over all the previous form pages. This data can then
be validated and processed in the usual manner.

If you don’t like the thought of manually managing the task of preserving
data across a multipage form, there is a third alternative: use PEAR’s HTML_
QuickForm_Controller class, available from http://pear.php.net/package/
HTML_QuickForm_Controller, to handle it for you automatically. The HTML_
QuickForm_Controller class is an add-on to the HTML_QuickForm package,
designed specifically to deal with multipage forms. Here’s how you might use it:

<?php

// include HTML_QuickForm class

include "HTML/QuickForm.php";

// include HTML_Quickform_Controller class

include "HTML/QuickForm/Controller.php";

include "HTML/QuickForm/Action.php";

// initialize session

// form input is stored here

// during page transitions

session_start();

// custom class for form pages

class checkoutPage extends HTML_QuickForm_Page {

 // override default method

 function buildForm() {

 $this->_formBuilt = true;

 // get page name

 // build appropriate form elements

 switch($this->getAttribute("id")) {

 // first page

 case 'persInfo':

 3 3 2 P H P P r o g r a m m i n g S o l u t i o n s

 //--- form elements here ---//

 // add header

 $this->addElement("header", null, ↵
"Personal Information");

 // add input boxes

 $this->addElement("text", "name", "Name:",↵
array("size" => 30));

 $this->addElement("text", "email", "E-mail address:");

 $this->addElement("text", "tel", "Telephone:",↵
array("size" => 10));

 // add submit button

 $this->addElement("submit", null, "Go to Page 2");

 //--- form validation rules here ---//

 // for example

 $this->applyFilter(array("name", "email", "tel"), ↵
"trim");

 $this->addRule("name", "Please enter your name", ↵
"required");

 $this->addRule("email", "Please enter a valid↵
e-mail address", "email");

 break;

 // second page

 case 'pymtInfo':

 //--- form elements here ---//

 // add header

 $this->addElement("header", null, ↵
"Payment Information");

 // add card selection list

 $select = $this->addElement("select", "cctype",↵
"Card type:", array("V" => "Visa", "M" => "MasterCard", ↵
"A" => "AmEx"));

 // add input box for card name

 $this->addElement("text", "ccname", ↵
"Name on credit card:", array("size" => 25));

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 3 3

 // add input box for card expiry date

 $this->addElement("text", "ccexp", "Credit card↵
expiration date (MM/YYYY):", array("size" => 7));

 // add radio button group

 $radio[] =& HTML_QuickForm::createElement("radio", ↵
null, null, "Yes", "Y");

 $radio[] =& HTML_QuickForm::createElement("radio", ↵
null, null, "No", "N");

 $this->addGroup($radio, "email_invoice", ↵
"Email invoice:");

 // add submit button

 $this->addElement("submit", null, "Place Order");

 //--- form validation rules here ---//

 // for example

 $this->applyFilter(array("ccname", "ccexp"), "trim");

 $this->addRule("ccname", "Please enter the↵
card holder's name", "required");

 break;

 // add cases for additional pages as needed

 }

 // once page is validated and submitted

 // go to next page

 $this->setDefaultAction("next");

 }

}

// custom class for form action

class checkoutAction extends HTML_QuickForm_Action {

 function perform(&$page, $actionName) {

 // get all the submitted data as an array

 $data = $page->controller->exportValues();

 // process the data

 // for example, save to a database or file

 print_r($data);

 3 3 4 P H P P r o g r a m m i n g S o l u t i o n s

 // print success message

 echo "Thank you for your order";

 }

}

// initialize form controller

$formMulti =& new HTML_QuickForm_Controller("orderCheckout");

// add pages to form

// each page appears only after previous

// page has been submitted with valid data

$formMulti->addPage(new checkoutPage("persInfo"));

$formMulti->addPage(new checkoutPage("pymtInfo"));

// add more pages here as needed

// add action for final page

$formMulti->addAction("process", new checkoutAction());

// generate form

$formMulti->run();

?>

This might look immensely complicated, but it really isn’t. The HTML_
QuickForm_Controller package provides two basic classes, HTML_QuickForm_
Page and HTML_QuickForm_Action, representing a single page of a multipage
form and the action to be taken on the final page respectively. Both these must be
subclassed before they can be used to build a multipage form.

In this listing, a custom checkoutPage class first extends the base HTML_
QuickForm_Page class. Form pages are then represented as object instances of
checkoutPage class, and incorporate standard HTML_QuickForm elements and
validation tests. Because this form contains two input pages, two such form page
objects are generated, named persInfo and pymtInfo, respectively. These objects
are attached to the top-level HTML_QuickForm_Controller object by means of the
addPage() method.

Next, a custom checkoutAction class, representing the action to be taken on the
final page, extends the base HTML_QuickForm_Action class. This subclass defines
a perform() method, which contains the code to be executed once all the pages
of the form have been submitted with valid data. The action object is attached to

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 3 5

the top-level HTML_QuickForm_Controller object by means of the addAction()
method.

Once both the form’s pages and actions are defined, the run() method of the
HTML_QuickForm_Controller object is used to generate the form. Submissions
are internally handled by the HTML_QuickForm_Controller engine, with form
generation and data validation performed by the HTML_QuickForm class.

NOTE

As this listing illustrates, the HTML_QuickForm_Controller class is fairly complex, and requires
more detailed explanation than is possible here. If you plan to use it to generate a multipage
form, refer to the class documentation at http://pear.php.net/package/
HTML_QuickForm_Controller to obtain a better understanding of how it works.
You can also refer to the listings in “8.1: Generating Forms,” “8.6: Validating Form Input,” “8.16:
Uploading Files Through Forms” for more examples of the base HTML_QuickForm package in
action.

8.18 Protecting Form Submissions with a CAPTCHA

Problem
You want to verify that a human, rather than an automated script or “bot,” submitted
a form.

Solution
First, use PEAR’s Text_CAPTCHA package to dynamically generate a CAPTCHA
(Completely Automated Public Turing test to tell Computers and Humans Apart)
image:

File: captcha-generator.php

<?php

// include class

include "Text/CAPTCHA.php";

// set font options

$options = array(

 3 3 6 P H P P r o g r a m m i n g S o l u t i o n s

 "font_size" => 24,

 "font_path" => "C:/windows/fonts/",

 "font_file" => "ARIAL.TTF"

);

// configure CAPTCHA options

$captcha = Text_CAPTCHA::factory('Image');

$captcha->init(250, 150, null, $options)↵
or die ("ERROR: Cannot generate CAPTCHA");

// get CAPTCHA string

$str = $captcha->getPhrase();

// start session

// store MD5 signature of CAPTCHA string in session variable

session_start();

$_SESSION['captcha'] = md5($str);

// send CAPTCHA image as output to client

header("Content-Type: image/jpeg");

print $captcha->getCAPTCHAAsJPEG();

exit();

?>

Then attach the CAPTCHA to a form and verify that the CAPTCHA is correctly
solved before processing the form submission:

File: form.php

<?php session_start(); ?>

<html>

 <head></head>

 <body>

<?php

// if form has not been submitted

// generate form

if (!$_POST['submit'])

{

?>

 <form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="POST">

 <p>

 Name:

 <input type="text" name="name" size="20" />

 </p>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 3 7

 <p>

 Message:

 <textarea name="message"></textarea>

 </p>

 <p>

 Enter the text in the image below to verify that this is↵
a genuine message. <input type="text" name="captcha" size="15" />

 </p>

 <p>

 <input type="submit" name="submit" value="Send Message">

 </p>

 </form>

<?php

// if form has been submitted

// check if MD5 signature of input CAPTCHA string

// matches that generated by the original CAPTCHA

} else {

 if (md5($_POST['captcha']) == $_SESSION['captcha']) {

 // destroy CAPTCHA session variable

 // print success message and POST-ed data

 unset($_SESSION['captcha']);

 unset($_POST['captcha']);

 echo "Your submission was successful.";

 var_dump($_POST);

 } else {

 echo "Your submission was not accepted. <a ↵
href='{$_SERVER['PHP_SELF']}'>Try again.";

 }

}

?>

 </body>

</html>

Comments
PEAR’s Text_CAPTCHA package, freely available from http://pear.php
.net/package/Text_Captcha, takes all the hassle out of actually generating
a CAPTCHA image. As the first listing (captcha-generator.php) illustrates,
generating a CAPTCHA begins by initializing an instance of the Text_CAPTCHA
class, and setting options such as the height and width of the image and the font file
to use for the CAPTCHA string. The getPhrase() method returns the solution
of the CAPTCHA as a string, while the getCAPTCHAAsJPEG() method prints the
CAPTCHA as a JPEG image (other image formats are also supported).

 3 3 8 P H P P r o g r a m m i n g S o l u t i o n s

Using this CAPTCHA in combination with a form is somewhat more involved.

 1. The simple CAPTCHA generation script described previously (captcha-
generator.php) must be modified to store the CAPTCHA solution in a
session variable. This enables it to be used by other scripts operating in the
context of the same user session. For greater security, it’s also possible to store
an MD5 signature of the solution (rather than the solution itself), as the first
listing does.

 2. It’s necessary to modify the form (form.php) with some additional elements.
First, the CAPTCHA image itself must be displayed; this is accomplished by
referencing captcha-generator.php in an tag. A text input
field should also be added, to enable a user to input the CAPTCHA solution.

 3. The form processing script must create an MD5 signature of the user’s
input, and check this signature against that originally stored in the session
by the captcha-generator.php script. If the signatures match, it may
be assumed that a human solved the CAPTCHA, and form processing can
continue. If the signatures do not match, it could be for one of two possible
reasons: (a) a human attempted to submit the form but was unable to solve the
CAPTCHA; (b) the form was submitted by an automated script. In either case,
the appropriate response is to reject the form submission and offer the user the
chance to resubmit with a different CAPTCHA and solution.

NOTE

A CAPTCHA, or Completely Automated Public Turing test to tell Computers and Humans Apart, is
a common challenge-response test used to identify if the entity at the other end of a connection
is a human being or a computer. On the Web, the typical form of a CAPTCHA is a distorted
sequence of random alphanumeric characters, operating on the principle that a computer will be
unable to see past the distortion, but a human, with greater powers of perception, will be able to
correctly identify the sequence. Such CAPTCHAs are typically attached to input forms on the Web
(for example, user registration forms), and must be solved correctly before the input will
be processed by the host application. CAPTCHAs need not always be visual; audio CAPTCHAs are
also possible, and are most appropriate for visuallyhandicapped users.
 Read more about CAPTCHAs at http://en.wikipedia.org/wiki/
Captcha.

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 3 9

8.19 Storing and Retrieving Session Data

Problem
You want to make one or more variables persistent across a client session.

Solution
Use PHP’s session_start() function to start a new session (or import a previous
one), and register variables in the session by adding them to the $_SESSION
associative array:

<?php

// start new session

// or import previous session

session_start();

// add session variables

$_SESSION['type'] = "Porsche Boxster";

$_SESSION['colors'] = array("black", "silver", "red");

print_r($_SESSION);

?>

Retrieve previously saved session variables by accessing the keys of the
$_SESSION associative array:

<?php

// start session

session_start();

// check if session variables exist

if (isset($_SESSION['type']) && isset($_SESSION['colors'])) {

 // do something with them

 echo "You would like a " . $_SESSION['type'] . " in " .↵
implode(" and ", $_SESSION['colors']);

}

?>

 3 4 0 P H P P r o g r a m m i n g S o l u t i o n s

Comments
To start a session in PHP, use the session_start() function. Once a session has
been initialized, register session variables by adding them to the special $_SESSION
associative array as key-value pairs. In subsequent scripts, calling the session_
start() function re-creates the session environment by importing the contents of the
$_SESSION associative array into the current symbol table. You can then retrieve the
values of previously registered session variables from the $_SESSION array, by key.

To delete session data, see the listing in “8.20: Deleting Session Data.”

NOTE

The call to session_start() must take place before any output is generated by the
script. This is because of restrictions in the HTTP protocol that require cookie, session, and HTTP
headers to be sent before any script output. To bypass these restrictions, see the listing in “8.30:
Bypassing Protocol Restrictions on Session and Cookie Headers.”

8.20 Deleting Session Data

Problem
You want to delete a single session variable, or destroy all the variables associated
with a session.

Solution
Use PHP’s unset() function to selectively remove session variables:

<?php

// start session

session_start();

// remove a session variable

if (isset($_SESSION['type'])) {

 unset($_SESSION['type']);

}

print_r($_SESSION);

?>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 4 1

Use PHP’s session_destroy() function to destroy all the variables registered
in a session:

<?php

// start session

session_start();

// reset session array

$_SESSION = array();

// destroy session

session_destroy();

print_r($_SESSION);

?>

Comments
To remove a previously registered session variable, simply unset() the corresponding
key in the $_SESSION array. To delete all the data associated with a session, reset
the $_SESSION array and use the session_destroy() function to erase session
data. Note that before you can call session_destroy(), you need to first re-create
the session environment with session_start().

To find out more about setting and retrieving session variables, see the listing in
“8.19: Storing and Retrieving Session Data.”

8.21 Serializing Session Data

Problem
You want to serialize session data into a string, or restore a session using a previously
serialized string.

Solution
Use PHP’s session_encode() function to serialize session variables, and PHP’s
session_decode() function to deserialize the encoded data and re-create the
session:

<?php

// start session

session_start();

 3 4 2 P H P P r o g r a m m i n g S o l u t i o n s

// register session variables

$_SESSION['parrot'] = "Polly";

$_SESSION['dog'] = array("Sparky", "Mr. Sparks");

// encode session data into string

$encodedStr = session_encode();

// destroy session

$_SESSION = array();

session_destroy();

// recreate session

// decode session data from string

session_start();

session_decode($encodedStr);

print_r($_SESSION);

?>

Comments
The session_encode() function encodes the variables and values of the current
session into a string. The session_decode() function reads this encoded string
and re-creates the session from it. These functions are useful to create a persistent
snapshot of a session in a file or database.

NOTE

The session_start() function must be used to start a session before session_
encode() or session_decode() can be used.

8.22 Sharing Session Data

Problem
You want to share the information stored in a PHP session with a script written in
another language—for example, one written in Perl (Practical Extraction and Report
Language) or JSP (Java Server Pages).

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 4 3

Solution
Encode the contents of the PHP session and send it as an HTTP POST request to the
receiving script:

<?php

// include HTTP_Request class

include "HTTP/Request.php";

// start session

session_start();

// create object

$request = &new HTTP_Request();

// define receiver URL and method

$request->setUrl("/cgi-bin/respond.cgi");

$request->setMethod("POST");

// dump session variables

foreach ($_SESSION as $key=>$value) {

 $request->addPostData($key, $value);

}

// send data via POST

$request->sendRequest();

// get response body

$body = $request->getResponseBody();

echo $body;

?>

Comments
In a perfect world, everything would be written in PHP. In the real world, however,
it’s quite likely that you’ll be working in an environment that has multiple scripting
languages coexisting with each other. In this situation, you might need to send data
stored in a PHP session to scripts written in other languages for calculation or further
processing (and then perhaps import the response back into PHP).

One way to do this is to serialize the $_SESSION array and save it to a file, which
the external process can then read and use. In a multiuser, multiprocess environment,
though, this option increases the potential for data corruption, and requires careful

 3 4 4 P H P P r o g r a m m i n g S o l u t i o n s

planning to be successful. It also has a significant drawback in that both source and
target processes must be running on the same physical system, or must have access
to a shared data storage area.

An alternative option is the one outlined in this listing. Assuming an HTTP-
compliant environment with CGI (Common Gateway Interface) support, it’s fairly
easy to encode the PHP session into a POST request packet and submit it, as though
it were a form, to the target script through CGI. The previous listing uses the PEAR
HTTP_Request class, available from http://pear.php.net/package/HTTP_
Request to create a POST packet; it then iterates through the $_SESSION array and
adds each variable-value pair found to the packet using the addPostData() object
method. The request is then submitted over HTTP to the target script. If a response is
forthcoming, this response can be read with the getResponseBody() method, and
handled in the most appropriate manner.

The target CGI script treats the input data as though it were a POST-ed form,
which means that standard language constructs can be used to process it. In Perl, for
example, you can use the CGI.pm package to retrieve and reconstitute the POST-ed
data into native Perl structures.

TIP

This listing demonstrates how to transfer the contents of a PHP session to a script written in
another language. However, you can use this technique to share the contents of any PHP variable,
scalar, or array with scripts written in other languages, so long as those scripts support CGI and
know how to extract data from an HTTP POST request.
 You can see a few more examples of the HTTP_Request class in action in the listings in “7.10:
Charting Task Status with a Progress Bar” and “7.20: Reading Remote Files.”

8.23 Storing Objects in a Session

Problem
You want to make an object persistent across a session.

Solution
Start a session and add the object to the $_SESSION array:

<?php

// include HTML_Page class

include "HTML/Page2.php";

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 4 5

// create object

$page = &new HTML_Page2();

// set an object property

$page->setTitle("Black Tree Cliff");

// start session

session_start();

// save object in session

$_SESSION['html_page_obj'] = $page;

?>

To access the object at any time during the session, load the class definition,
import the session data, and retrieve the object from the $_SESSION array:

<?php

// include HTTP_Request class

include "HTML/Page2.php";

// start session

session_start();

// retrieve object from session

$obj = $_SESSION['html_page_obj'];

// returns "Black Tree Cliff"

$title = $obj->getTitle();

echo $title;

?>

Comments
Storing an object in a session is identical to storing a scalar or array variable—
simply add it to the $_SESSION array. When retrieving it, though, it’s critical that
the corresponding class definition be loaded first, before any attempt is made to
retrieve the object from the $_SESSION array. Failure to follow this sequence will
result in PHP errors about “incomplete objects.”

This listing illustrates the process, initializing an instance of the HTML_Page2
class and setting the value of an object property with the setTitle() method. The
object is then stored in the $_SESSION array. Following this, in another script, the
class definition is loaded, the session data is reimported and the object is retrieved
from the $_SESSION array. The object’s getTitle() method is then used to verify
that the object has been reimported correctly, with no loss of data.

 3 4 6 P H P P r o g r a m m i n g S o l u t i o n s

8.24 Storing Sessions in a Database

Problem
You want to store session information in a database instead of a session cookie.

Solution
First, create a (MySQL) database table to hold session information:

+------------+--------------+------+-----+-------------------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+--------------+------+-----+-------------------+-------+

| sid | varchar(255) | | PRI | | |

| sdata | text | YES | | NULL | |

| stimestamp | timestamp | YES | | CURRENT_TIMESTAMP | |

+------------+--------------+------+-----+-------------------+-------+

Then, use PHP’s session_set_save_handler() function to register custom
handlers to store session data in this table:

<?php

// define database connection parameters

$host = "localhost";

$user = "user";

$pass = "pass";

$db = "db1";

$table = "sessions";

// function to open session record

// function receives session path and name

function _sess_open($sessionPath, $sessionName) {

 // uncomment this for debugging

 // echo "Opening...\n";

 // retrieve database parameters

 global $host, $user, $pass, $db, $table, $connection;

 // open connection to database

 $connection = mysql_connect($host, $user, $pass)↵
or die ("Unable to connect!");

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 4 7

 // select database

 mysql_select_db($db, $connection) or die ↵
("Unable to select database!");

 // return

 return true;

}

// function to close session record

function _sess_close() {

 // uncomment this for debugging

 // echo "Closing...\n";

 // retrieve database connection handle

 global $connection;

 // close connection and return

 return mysql_close($connection);

}

// function to read session record

// function receives session ID

function _sess_read($sessionID) {

 // retrieve database connection handle and table name

 global $table, $connection;

 // initialize variable

 $data = "";

 // create query to get session data

 $query = "SELECT sdata FROM $table WHERE sid = '$sessionID'";

 // execute query

 $result = mysql_query($query, $connection)↵
or die ("Error in query: $query. " . mysql_error());

 // if data exists

 // retrieve it

 if (mysql_num_rows($result) > 0) {

 $row = mysql_fetch_object($result);

 $data = $row->sdata;

 }

 3 4 8 P H P P r o g r a m m i n g S o l u t i o n s

 // uncomment this for debugging

 // echo "Reading [$data]...\n";

 // return session data string

 return $data;

}

// function to write session

// function receives session ID and data to write

function _sess_write($sessionID, $sessionData) {

 // uncomment this for debugging

 // echo "Writing [$sessionData]...\n";

 // retrieve database connection handle and table name

 global $table, $connection;

 // create query to see if session record exists

 $query1 = "SELECT * FROM $table WHERE sid = '$sessionID'";

 // execute query

 $result1 = mysql_query($query1, $connection)↵
or die ("Error in query: $query1 . " . mysql_error());

 // if session record exists

 // update it

 // if session record does not exist

 // create new record

 if (mysql_num_rows($result1) > 0) {

 $query2 = "UPDATE $table SET sdata = '" . ↵
mysql_escape_string($sessionData) . "', stimestamp =↵
FROM_UNIXTIME('" . mktime() . "') WHERE sid = '$sessionID'";

 } else {

 $query2 = "INSERT INTO $table (sid, sdata,↵
stimestamp) VALUES('$sessionID', '" . ↵
mysql_escape_string($sessionData) . "', FROM_UNIXTIME('" .↵
mktime() . "'))";

 }

 // execute query

 $result2 = mysql_query($query2, $connection)↵
or die ("Error in query: $query2. " . mysql_error());

 // return

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 4 9

 return true;

}

// function to erase session record

// function receives session ID

function _sess_destroy($sessionID) {

 // uncomment this for debugging

 // echo "Deleting...\n";

 // retrieve database connection handle and table name

 global $table, $connection;

 // create query to remove session record

 $query = "DELETE FROM $table WHERE sid = '$sessionID'";

 // execute query

 $result = mysql_query($query, $connection)↵
or die ("Error in query: $query. " . mysql_error());

 // return

 return true;

}

// function to remove expired session records

function _sess_gc($sessionLife) {

 // uncomment this for debugging

 // echo "Cleaning up...\n";

 // retrieve database connection handle and table name

 global $table, $connection;

 // check timestamps of session records

 // remove all those more than (session.gc_maxlifetime) seconds old

 $query = "DELETE FROM $table ↵
WHERE UNIX_TIMESTAMP(stimestamp) +↵
$sessionLife < UNIX_TIMESTAMP(NOW())";

 // execute query

 $result = mysql_query($query, $connection)↵
or die ("Error in query: $query. " . mysql_error());

 // return

 return true;

}

 3 5 0 P H P P r o g r a m m i n g S o l u t i o n s

// register custom session handling functions

session_set_save_handler("_sess_open", "_sess_close",↵
"_sess_read", "_sess_write", "_sess_destroy", "_sess_gc");

// start session

session_start();

// register session variables

$_SESSION['uname'] = "jimbo";

$_SESSION['uid'] = "745626";

// destroy session

session_destroy();

?>

Comments
By default, PHP stores session data in a cookie and reimports this data into a script
when the session_start() function is called. However, in certain situations, you
may prefer to use a database table to store this information.

As this listing illustrates, the table used for session data must contain fields for the
session ID, session values, and a timestamp. Once it has been initialized, override
PHP’s built-in session handlers by using the session_set_save_handler()
function to define replacement functions for opening, closing, reading, writing,
destroying, and cleaning up sessions. In the previous listing, these replacement
functions are named _sess_open(), _sess_close(), _sess_read(), _sess_
write(), _sess_destroy(), and _sess_gc(), respectively, and they’re passed
to session_set_save_handler() as string arguments.

Internally, each of these functions interacts with the database server, reading and
writing data to and from the session database, as follows:

� The _sess_open() function opens a connection to the database.

� The _sess_read() function uses the session ID to obtain a list of currently
registered session variables and values.

� The _sess_write() function creates a new session record, or, if one already
exists, updates it with the latest session variables and values.

� The _sess_close() function closes the database connection.

� The _sess_destroy() function removes the session record from the
database.

� The _sess_gc() function uses the session timestamp to identify and remove
expired session records.

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 5 1

Once these functions have been registered with session_set_save_
handler(), all session data will be saved to the database. You can verify
this by calling session_start() and adding some data to the session while
simultaneously watching the MySQL table.

TIP

To see your custom session handler in action, uncomment the debugging statements in each
handler function.

8.25 Creating a Session-Based Shopping Cart

Problem
You want to allow users to select items from a catalog and save them to a persistent
“shopping cart” for later access.

Solution
First, create a (SQLite) database table to hold a catalog of items:

productSKU productName productUnitCost

100 Leopard-skin throw rug 89.99

200 Sunblock 4.99

300 Can o' worms 9.99

400 Boomerang 15.99

500 Ivory cigar holder 450.00

Then, create a persistent variable to hold the items selected by the user, and write
code to add and delete items from it:

<?php

// start session

session_start();

// initialize session shopping cart

if (!isset($_SESSION['cart'])) {

 $_SESSION['cart'] = array();

}

// get product list //

 3 5 2 P H P P r o g r a m m i n g S o l u t i o n s

// open database

$handle = sqlite_open("products.db")↵
or die ("ERROR: Unable to open database!");

// generate and execute query

$query = "SELECT productSKU, productName, ↵
productUnitCost FROM products";

$result = sqlite_query($handle, $query)↵
or die ("ERROR: Cannot execute $query. " .

sqlite_error_string(sqlite_last_error($handle)));

// save product list as array

if (sqlite_num_rows($result) > 0) {

 while($row = sqlite_fetch_object($result)) {

 $sku = $row->productSKU;

 $productInfo[$sku] = array();

 $productInfo[$sku]['name'] = $row->productName;

 $productInfo[$sku]['price'] = $row->productUnitCost;

 }

} else {

 die ("ERROR: Cannot retrieve product information");

}

// close connection

sqlite_close($handle);

// define cart actions //

switch($_POST['action']) {

 // when items are added

 case 'add':

 // iterate over POST-ed data

 // get SKU and quantity

 foreach ($_POST['addQty'] as $sku => $quantity) {

 // add item SKU and quantity to cart

 if (isset($quantity) && $quantity > 0) {

 $_SESSION['cart'][$sku] += $quantity;

 }

 }

 break;

 // when cart is updated

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 5 3

 case 'update':

 // iterate over POST-ed data

 // get SKU and quantity

 foreach ($_POST['updateQty'] as $sku => $quantity) {

 // if quantity = 0

 // remove item from cart

 if ($quantity == 0 && trim($quantity) != "") {

 unset($_SESSION['cart'][$sku]);

 }

 // if quantity > 0

 // set new quantity

 if ($quantity > 0) {

 $_SESSION['cart'][$sku] = $quantity;

 }

 }

 break;

 // when cart is reset

 case 'reset':

 // destroy the cart

 $_SESSION['cart'] = array();

 break;

}

?>

<html>

<head></head>

<body>

<table border="0" width="100%" cellpadding="10">

<tr>

<td valign="top">

 <!-- complete product list -->

 <u>Available Products</u>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

<?php

 // print the product list

 foreach ($productInfo as $sku => $item) {

 echo "" . $item['name'] . "
\n";

 echo "Unit price: " . $item['price'] . "
\n";

 echo "Quantity: <input type=text size=4 ↵
name=addQty[$sku] />\n";

 3 5 4 P H P P r o g r a m m i n g S o l u t i o n s

 echo "<p />\n";

 }

?>

 <input type="hidden" name="action" value="add">

 <input type="submit" value="Add To Cart">

 </form>

 </td>

<td valign="top">

 <!-- current shopping cart-->

 <u>Selected Products</u>

<?php

if (sizeof($_SESSION['cart']) > 0) {

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

<?php

 // print the currently selected items

 foreach ($_SESSION['cart'] as $sku => $quantity) {

 echo "" . $productInfo[$sku]['name'] . "
\n";

 echo $quantity . " units @ " . $productInfo[$sku]['price'] .↵
" each
\n";

 $subtotal = $quantity * $productInfo[$sku]['price'];

 $total += $subtotal;

 echo "Subtotal: " . number_format($subtotal, 2) . "
\n";

 echo "New quantity: <input type=text size=4 ↵
name=updateQty[$sku] />\n";

 echo "<p />\n";

 }

?>

 TOTAL: <?php echo number_format($total, 2); ?>

 <p />

 <input type="hidden" name="action" value="update">

 <input type="submit" value="Update Cart">

 </form>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 <input type="hidden" name="action" value="reset">

 <input type="submit" value="Reset Cart">

 </form>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 5 5

<?php

} else {

?>

 <p />

 No products selected.

<?php

}

?>

</body>

</html>

Comments
In this listing, a SQLite database is used to store a list of items and their prices.
PHP’s SQLite API is used to query the database and retrieve the item list for display.
A Web page is then generated, containing three forms: one lists the available items
in the catalog, one lists the selected items in the shopping cart, and one displays
a cart reset button. Both catalog and cart forms contain input fields, enabling the
user to either add specific quantities of an item from the catalog to the cart, or
update existing quantities in the cart. The “cart” itself is nothing but an associative
array containing codes and quantities for the selected products; it is stored as $_
SESSION['cart'].

Figure 8-2 illustrates what this looks like.
Depending on which of the three forms is submitted, a hidden action field

activates the appropriate branch of the switch() conditional statement to update
the $_SESSION['cart'] array. As items are added to (or removed from) the cart,
the $_SESSION['cart'] array is updated with the corresponding product codes
and quantities, and the various totals and subtotals are recalculated. Setting an item
quantity to zero deletes the corresponding product code from the $_SESSION
['cart'] array, while resetting the cart deletes all the product codes and quantities
from $_SESSION['cart'].

TIP

It’s easy to extend this listing for more complex requirements—simply add a new action button to
the form, and a new branch to the switch() conditional statement to handle the action.

 3 5 6 P H P P r o g r a m m i n g S o l u t i o n s

8.26 Creating a Session-Based User
Authentication System

Problem
You want users to authenticate themselves with a valid password before granting
access to a protected resource.

Figure 8-2 A shopping cart form

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 5 7

Solution
First, create a (MySQL) database table for authentication parameters:

+----+----------+------------------+

| id | username | password |

+----+----------+------------------+

| 1 | john | 2ca0ede551581d29 |

| 2 | joe | 7b57f28428847751 |

| 3 | tom | 675bd1463e544441 |

| 4 | bill | 656d52cb5d0c13cb |

+----+----------+------------------+

Then, request the user’s credentials through a login form and grant access if the
credentials match the information stored in the database:

<?php

// form not submitted

if (!$_POST['submit']) {

?>

<html>

<head></head>

<body>

 <table border="0" cellspacing="5" cellpadding="5">

 <form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="POST">

 <tr>

 <td>Username</td>

 <td><input type="text" size="10" name="username"></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><input type="password" size="10" name="password"></td>

 </tr>

 <tr>

 <td colspan="2" align="center"><input type="submit"↵
name="submit" value="Log In"></td>

 </tr>

 </form>

 </table>

</body>

</html>

 3 5 8 P H P P r o g r a m m i n g S o l u t i o n s

<?php

} else {

// form submitted

 // check for username

 if (!isset($_POST['username']) || trim($_POST['username']) == "") {

 die ("You must enter a username!");

 }

 // check for password

 if (!isset($_POST['password']) || trim($_POST['password']) == "") {

 die ("You must enter a password!");

 }

 // assign to variables and escape

 $inputUser = mysql_real_escape_string($_POST['username']);

 $inputPass = mysql_real_escape_string($_POST['password']);

 // connect and execute SQL query

 $connection = mysql_connect("localhost", "user", "pass")↵
or die ("Unable to connect!");

 mysql_select_db("db1");

 $query = "SELECT id from users WHERE username = '$inputUser'↵
AND password = PASSWORD('$inputPass')";

 $result = mysql_query($query, $connection)↵
or die ("Error in query: $query. " . mysql_error());

 if (mysql_num_rows($result) == 1) {

 // if row exists

 // user/pass combination is correct

 // start a session

 session_start();

 // register a session variable

 $_SESSION['authorizedUser'] = 1;

 // redirect browser to protected resource

 header("Location: success.php");

 } else {

 // if row does not exist

 // user/pass combination is wrong

 // redirect browser to error page

 header("Location: fail.php");

 }

}

?>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 5 9

Comments
Many Web applications require a user to authenticate himself or herself, by
providing a valid password, before granting access to protected information. This is
usually implemented as a login form, with input fields for the user’s account name
and password. On submission, the credentials supplied are verified against the user
database and, if they’re found to be correct, are used to grant access.

Figure 8-3 illustrates what this looks like.
This listing outlines the PHP business logic behind such an authentication system.

The top half of the script is concerned with the display of the login form and its
two input fields. The bottom half verifies that both fields have been filled in, opens
a connection to the MySQL database, and executes a SELECT query to retrieve the

Figure 8-3 A log-in form

 3 6 0 P H P P r o g r a m m i n g S o l u t i o n s

user record corresponding to the supplied name and password. The response to the
SELECT query is all-important: If the user name and password are correct, it will
contain a single result row and if not, it will not contain any data.

Depending on the MySQL response, the client is redirected appropriately: Invalid
credentials lead to an error page, while valid ones grant access to the protected area.
If the login is valid, a session variable is also registered indicating this fact; this
session variable may be used to verify the user’s status on subsequent page requests
(to see how, flip to the listing in “8.27: Protecting Data with Sessions”).

8.27 Protecting Data with Sessions

Problem
You want to display a page only to specified users—for example, to successfully
logged-in users.

Solution
Use a session variable as a flag to determine whether or not the page should be
displayed:

<?php

// start session

session_start();

// check session for flag

if ($_SESSION['authorizedUser'] != 1) {

 // if flag is absent

 // the user does not have view privileges

 // print error message

 echo "You are not authorized to view this page.";

 // terminate processing

 // kick the client out

 exit();

} else {

 echo "Welcome!";

}

?>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 6 1

Comments
Web sites and applications that distinguish between user types often use a session
variable to determine whether or not a user is authorized to view a particular page.
In its simplest form, this technique consists of first setting a session variable with
the user’s privilege level following authentication, and then checking the value of
this session variable on all subsequent accesses to determine whether or not the page
should be displayed. The previous listing demonstrates how such a check may be
performed at the beginning of every page.

8.28 Storing and Retrieving Cookies

Problem
You want to make one or more variables persistent across multiple client requests.

Solution
Use PHP’s setcookie() function to store the variable(s) in a client-side cookie:

<?php

// set cookie

setcookie("freqFlyerMiles", "26789", mktime()+86400, "/");

?>

Retrieve previously saved session variables by accessing the keys of the $_
COOKIE associative array:

<?php

// check if cookie variables exists

if (isset($_COOKIE['seatClass']) && isset($_COOKIE['freqFlyerMiles'])) {

 // do something with them

 if ($_COOKIE['seatClass'] == "B" && ↵
$_COOKIE['freqFlyerMiles'] > 20000)

 {

 $upgradeFlag = 1;

 }

}

?>

 3 6 2 P H P P r o g r a m m i n g S o l u t i o n s

Comments
In PHP, cookies are set with the setcookie() function, which accepts six
arguments: the cookie name, its value, its expiration date (in UNIX timestamp
format), the path and domain for which it is valid, and a Boolean flag indicating
its security status. Only the first argument is required; all the rest are optional.
On subsequent requests, the cookie is automatically imported into the $_COOKIE
associative array, and it can be retrieved by name.

To delete cookies, see the listing in “8.29: Deleting Cookies.”

NOTE

The call to setcookie() must take place before any output is generated by the script. This
is because of restrictions in the HTTP protocol that require cookie, session, and HTTP headers to
be sent before any script output. To bypass these restrictions, see the listing in “8.30: Bypassing
Protocol Restrictions on Session and Cookie Headers.”

8.29 Deleting Cookies

Problem
You want to delete a cookie.

Solution
Use the setcookie() function to set the cookie’s expiration date to a value in
the past:

<?php

// delete cookie

if (isset($_COOKIE['freqFlyerMiles'])) {

 setcookie("freqFlyerMiles", NULL, mktime()-10000, "/");

}

?>

Comments
PHP doesn’t offer any specific function to delete a cookie. The easiest way to
accomplish this is to simply rewrite the cookie with an expiration date in the past,
and have the client remove it automatically. The previous listing illustrates this,

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 6 3

using the mktime() function to generate a timestamp in the past.
To find out more about setting and retrieving cookies, see the listing in “8.28:

Storing and Retrieving Cookies.”

8.30 Bypassing Protocol Restrictions on Session
and Cookie Headers

Problem
You want to send a cookie, session header, or HTTP header even though your script
has already begun generating output.

Solution
Use PHP’s output buffering functions:

<?php

// start output buffering

ob_start();

// send some output

echo "Attempting to set a cookie...";

// set cookie

@setcookie("freqFlyerMiles", "26789", mktime()+86400, "/")↵
or die("Unable to set cookie.");

// send some more output

echo "Cookie set.";

// dump the buffer to the client

ob_end_flush();

?>

Comments
Normally, a PHP script can only send HTTP headers (including session and cookie
headers) to a client if the script has not yet generated any output. If the script
has generated even a single character of output, calls to the session_start(),

 3 6 4 P H P P r o g r a m m i n g S o l u t i o n s

setcookie(), header() and related functions will fail. This is a restriction
imposed by the HTTP protocol itself; it is not a PHP constraint.

This restriction may be avoided through use of PHP’s output buffering functions,
as illustrated in the previous listing. Here, output generated by the script is not
written directly to the standard output device (the client), but to a special memory
buffer instead. The client receives the output only when the contents of the buffer are
specifically released with the ob_end_flush() function. Given the contents of the
buffer are invisible until ob_end_flush() is invoked, HTTP headers can be sent at
any point in the script up until the call to ob_end_flush().

8.31 Building GET Query Strings

Problem
You want to convert a PHP array to a GET query string.

Solution
Use PHP’s http_build_query() function:

<?php

// define array of key-value pairs

$data = array(

 "princess" => "leia",

 "bad guys" => array("darth vader", "the emperor"),

 "heroes" => array("luke", "han", "chewbacca"),

 "teacher" => "yoda");

// convert array to query string

// result: "princess=leia&bad+guys%5B0%5D=darth+vader&↵
// bad+guys%5B1%5D =the+emperor&heroes%5B0%5D=luke

// &heroes%5B1%5D=han&heroes%5B2%5D=chewbacca↵
// &teacher=yoda"

$queryString = http_build_query($data);

echo $queryString;

?>

 C h a p t e r 8 : W o r k i n g w i t h F o r m s , S e s s i o n s , a n d C o o k i e s 3 6 5

Comments
PHP’s http_build_query() function accepts an associative or numerically
indexed array of data and converts it to a GET query string, complete with URL
encoding and separators. Nested arrays are supported as well.

8.32 Extracting Variables from a URL Path

Problem
You want to create a PHP associative array from the variable-value pairs encoded in
a URL path.

Solution
Parse the $_SERVER['PATH_INFO'] variable and create an array of key-value
pairs from it:

<?php

// extract variables encoded in an URL path

if (isset($_SERVER['PATH_INFO'])) {

 // define variable to hold key-value pairs

 $urlParams = array();

 // split string on slashes

 $elements = explode("/", $_SERVER['PATH_INFO']);

 // remove first (empty) element

 array_shift($elements);

 // link keys to values

 for ($x=0; $x<sizeof($elements); $x += 2) {

 $key = $elements[$x];

 $value = $elements[($x+1)];

 $urlParams[$key] = $value;

 }

}

print_r($urlParams);

?>

 3 6 6 P H P P r o g r a m m i n g S o l u t i o n s

Comments
To make their pages more attractive to search engines, many dynamic Web sites
prefer to encode script variables as part of the URL path itself, rather than in the
more traditional GET query string (which is unwieldy and hard for search engines
to decipher). Thus, for example, the URL http://www.some.domain.com/
display.php?id=45&page=2 would instead be written as http://www.some
.domain.com/display.php/id/45/page/2.

Variables encoded in a GET query string can be easily accessed through PHP’s
$_GET array. However, accessing variables encoded in a URL path requires a little
more work. First, the string of encoded variables must be separated from the rest of
the URL path, and second, it must be parsed and converted into key-value pairs.

These tasks are accomplished by using PHP’s special $_SERVER['PATH_INFO']
variable, which stores a string containing the information following the script file
name in a URL path. This string is explode()-d into an array of individual values,
and a for() loop is used to create an associative array from these values.

367

CHAPTER

9
Working with Databases

IN THIS CHAPTER:
9.1 Working with MySQL
9.2 Working with PostgreSQL
9.3 Working with SQLite
9.4 Working with Sybase
9.5 Working with Oracle
9.6 Working with Microsoft SQL Server
9.7 Working with ODBC
9.8 Writing Database-Independent Code
9.9 Retrieving the Last-Inserted Record ID

9.10 Counting Altered Records
9.11 Protecting Special Characters
9.12 Limiting Query Results
9.13 Using Prepared Statements
9.14 Performing Transactions
9.15 Executing Multiple SQL Commands at Once
9.16 Storing and Retrieving Binary Data
9.17 Caching Query Results

 3 6 8 P H P P r o g r a m m i n g S o l u t i o n s

One of the most compelling things PHP has going for it is its support for
a variety of Relational Database Management Systems (RDBMSs), including
MySQL, PostgreSQL, Oracle, and SQL Server. By virtue of this support, PHP

developers can create sophisticated data-driven Web applications at a fraction of the time
and cost required by competing alternatives. And this, naturally, is a Good Thing.

This chapter is devoted to solutions involving PHP and databases. In addition
to discussing the basics of connecting, querying, and fetching data from some
of today’s most well-known database systems, it also provides solutions to other
common tasks—retrieving a subset of an SQL result set; writing portable database
code; performing transactions; protecting special characters in query strings; and
storing binary data in a table.

Before getting started, however, you should be aware of the following:

� Most of the listings in this chapter make use of three linked tables, illustrated
in Figure 9-1. The SQL code needed to generate these tables (in MySQL and
SQLite) can be obtained from the downloadable code archive, at http://
www.php-programming-solutions.com.

� Before attempting to use any of the listings in this chapter, you must ensure
that your PHP build includes support for the appropriate database extension.
On Windows systems, this support can be enabled by activating the appropriate
DLL; on *NIX systems, it usually involves activating the appropriate extension
and recompiling PHP. Look in the PHP manual, at http://www.php.net/
manual/en/, for specifi c instructions on how to activate each extension.

With those caveats out of the way, let’s get started!

ORDERS

id qty

1001

id qty

100
100
150
400

4
3
1
2

PRODUCTS

id name price

1
2
3
4

apples
oranges
pineapples
bananas

14
20
25
10

INVENTORY

Figure 9-1 Table relationships

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 6 9

9.1 Working with MySQL

Problem
You want to execute SQL commands on a MySQL server.

Solution
Use PHP’s MySQLi extension:

<?php

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

mysqli_query($connection, $sql) or die ("ERROR: " .↵
mysqli_error($connection) . " (query was $sql)");

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = mysqli_query($connection, $sql)↵
or die ("ERROR: " . mysqli_error($connection) . " (query was $sql)");

// check for returned rows

// print if available

if (mysqli_num_rows($result) > 0) {

 while($row = mysqli_fetch_row($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

} else {

 echo "No records found!";

}

// close connection

mysqli_close($connection);

?>

Comments
PHP’s MySQLi (Improved MySQL) extension makes it possible to easily connect
to, and execute queries on, a MySQL database server. Connections are initialized

 3 7 0 P H P P r o g r a m m i n g S o l u t i o n s

with a call to mysqli_connect(), which must be supplied with valid server
access credentials—the server host name, a user name and password, and a database
name. SQL commands are executed via the mysqli_query() function, which
returns an SQL result object for SELECT, SHOW, DESCRIBE, and EXPLAIN queries,
and a Boolean value indicating success or failure for other query types (including
INSERT, UPDATE, and DELETE queries).

A number of methods exist to process the result set returned by mysqli_
query(). This listing demonstrates the mysqli_fetch_row() function, which
returns each row of the result set as a numerically indexed array that can easily be
processed with a while() or for() loop. Alternatives to the mysqli_fetch_
row() function include the mysqli_fetch_object() function, which returns
each row as an object that exposes field values as object properties; the mysqli_
fetch_assoc() function, which returns each row as an associative array; and the
mysqli_fetch_array() function, which returns each row as both an associative
array and a numerically indexed array.

Useful utility functions in this context include the mysqli_num_rows()
function, used to count the number of rows returned by a query, and the mysqli_
affected_rows() function (demonstrated in the listing in “9.10: Counting Altered
Records”), used to count the number of records affected by an INSERT, UPDATE,
or DELETE query. Connections can be terminated explicitly via a call to mysqli_
close(), although PHP will automatically close open connections once the script
ends. Errors, if any, can be retrieved via a call to mysqli_error(), which returns
the last error message generated by the server.

You can also use the MySQLi extension in an object-oriented way, wherein each
task—connecting, querying, fetching—is actually a method of the mysqli() object.
Take a look at this alternative version of the previous listing, which illustrates this:

<?php

// open connection

$mysqli = new mysqli('localhost', 'user', 'pass', 'db1');

if (mysqli_connect_errno()) {

 die("ERROR: Cannot connect. " . mysqli_connect_error());

}

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

if (!$mysqli->query($sql)) {

 die("ERROR: " . $mysqli->error . " (query was $sql)");

}

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 7 1

// create and execute SELECT query

// check for returned rows

// print if available

$sql = "SELECT id, name FROM products";

if ($result = $mysqli->query($sql)) {

 if ($result->num_rows > 0) {

 while($row = $result->fetch_row()) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

 } else {

 echo "No records found!";

 }

 $result->close();

} else {

 die("ERROR: " . $mysqli->error . " (query was $sql)");

}

// close connection

$mysqli->close();

?>

Here, the new keyword is used to instantiate an object of the class mysqli()
and pass the object constructor connection parameters. The resulting object, stored
in $mysqli, then exposes methods and properties to perform the tasks of querying,
fetching and processing rows, and handling errors. A close comparison of the
procedural and object-oriented approaches will reveal the similarities in function
(method) names and arguments.

You can retain compatibility with PHP versions earlier than PHP 5.0 by using the
“standard” MySQL extension. Although this older extension does not support the new
features of MySQL 4.1 and later, it is nevertheless more than adequate for the basic tasks
of connecting, querying, and fetching. The next listing illustrates how it can be used:

<?php

// open connection

$connection = mysql_connect('localhost', 'user', 'pass')↵
or die ("ERROR: Cannot connect");

// select database

mysql_select_db('db1') or die ("ERROR: Cannot select database");

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

mysql_query($sql) or die ("ERROR: " . mysql_error() . ↵
" (query was $sql)");

 3 7 2 P H P P r o g r a m m i n g S o l u t i o n s

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = mysql_query($sql) or die ("ERROR: " . mysql_error() .↵
" (query was $sql)");

// check for returned rows

// print if available

if (mysql_num_rows($result) > 0) {

 while($row = mysql_fetch_row($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

} else {

 echo "No records found!";

}

// close connection

mysql_close($connection);

?>

NOTE

As the listings in this section illustrate, code written for the new ext/mysqli extension looks
very similar to that written for the older ext/mysql extension. However, there are a whole
bunch of differences under the hood: ext/mysqli is faster, more secure, and more powerful
than regular ext/mysql, and it also includes support for prepared statements, bound result sets,
multiple simultaneous queries, transactions, and other new features available only in MySQL 4.1 and
later. In most cases, given a choice, ext/mysqli will serve you better than ext/mysql.

9.2 Working with PostgreSQL

Problem
You want to execute SQL commands on a PostgreSQL server.

Solution
Use PHP’s PostgreSQL extension:

<?php

// open connection

$connection = pg_connect("host=localhost dbname=db1↵
user=user password=pass") or die ("ERROR: Cannot connect");

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 7 3

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

pg_query($connection, $sql) or die ("ERROR: " .↵
pg_last_error($connection) . " (query was $sql)");

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = pg_query($connection, $sql)↵
or die ("ERROR: " . pg_last_error($connection) . ↵
" (query was $sql)");

// check for returned rows

// print if available

if (pg_num_rows($result) > 0) {

 while($row = pg_fetch_row($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

} else {

 echo "No records found!";

}

// close connection

pg_close($connection);

?>

Comments
PHP supports PostgreSQL databases through its PostgreSQL extension. Connections
to a PostgreSQL database server are initialized by calling the pg_connect()
function with appropriate credentials. Once a connection has been established, SQL
commands can be executed with the pg_query() function, which returns either
an SQL result object or a Boolean value indicating success or failure. The server
connection can be terminated with a call to pg_close(), with error messages (if
any) retrieved through pg_last_error().

The pg_fetch_row() function is one of many functions available to process
query results. This function returns each row of the result set as a numerically
indexed array, suitable for processing in a loop. Alternatives to this approach include
the pg_fetch_assoc() function, which returns each record as an associative
array; the pg_fetch_object() function, which returns each row as an object; the
pg_fetch_result() function, which returns the value of an individual field given
row and columns coordinates; and the pg_fetch_all() function, which returns all
the rows in the result set at once as a multidimensional array.

 3 7 4 P H P P r o g r a m m i n g S o l u t i o n s

9.3 Working with SQLite

Problem
You want to execute SQL commands on a SQLite database.

Solution
Use PHP’s SQLite extension:

<?php

// open database file

$handle = sqlite_open('products.db') or ↵
die ("ERROR: Cannot open database");

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

sqlite_query($handle, $sql)↵
or die ("ERROR: " . sqlite_error_string(sqlite_last_error($handle)) .↵
" (query was $sql)");

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = sqlite_query($handle, $sql)↵
or die ("ERROR: " . sqlite_error_string(sqlite_last_error($handle)) .↵
" (query was $sql)");

// check for returned rows

// print if available

if (sqlite_num_rows($result) > 0) {

 while($row = sqlite_fetch_array($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

}

// close database file

sqlite_close($handle);

?>

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 7 5

Comments
PHP 5 supports reading and writing SQLite databases via its SQLite extension. This
listing illustrates the process, by adding a record to a SQLite table with an INSERT
query and then reading records from a SQLite table with a SELECT query.

The process starts with a call to the sqlite_open() function, which attempts to
open the database file named as argument. If the call is successful, a database handle
is returned; if not, an empty database file is created with the supplied name. SQL
commands can be executed with the sqlite_query() function, which accepts
the database handle and query string as arguments and returns either a Boolean
value (for non-SELECT-type queries) or a result object (for SELECT-type queries).
The result object can then be processed with the sqlite_fetch_array() object,
which retrieves each row as both a numerically indexed array and an associative
array. The database connection is then closed with the sqlite_close() function.

Alternatives to the sqlite_fetch_array() function include the sqlite_
fetch_object() function, which returns each row as an object; the sqlite_
fetch_single() function, which returns the value of the first column of each
row; and the sqlite_fetch_all() function, which returns all the rows in the
result set at once as a multi-dimensional array. Useful ancillary function include
sqlite_num_rows(), which returns the number of records in the result set;
sqlite_changes(), which returns the number of rows changed by a query;
sqlite_last_error(); which returns the last error code generated; and sqlite_
error_string(), which converts an error code into a human-readable error
message.

You can also use the SQLite extension in an object-oriented way, wherein each of
the previous functions becomes a method of the SQLiteDatabase() object. Take
a look at this next listing, which is equivalent to the preceding one:

<?php

// create database object

$db = new SQLiteDatabase('products.db')

or die ("ERROR: Cannot open database");↵

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

$db->query($sql) or die ("ERROR: " .↵
sqlite_error_string(sqlite_last_error($handle)) . ↵
" (query was $sql)");

 3 7 6 P H P P r o g r a m m i n g S o l u t i o n s

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = $db->query($sql) or die ("ERROR: " .↵
sqlite_error_string(sqlite_last_error($handle)) .

" (query was $sql)");

// check for returned rows

// print if available

if ($result->numRows() > 0) {

 while($row = $result->fetch()) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

}

// close database file

unset($db);

?>

Here, the new keyword is used to instantiate an object of the class
SQLiteDatabase() and pass the object constructor the database file name and
path. The resulting object, stored in $db, then exposes methods and properties to
perform the tasks of querying, fetching and processing rows, and handling errors.
A close comparison of the procedural and object-oriented approaches will reveal the
similarities in function (method) names and arguments.

9.4 Working with Sybase

Problem
You want to execute SQL commands on a Sybase server.

Solution
Use PHP’s Sybase extension:

<?php

// open connection

$connection = sybase_connect('localhost', 'user', 'pass')↵
or die ("ERROR: Cannot connect");

// select database

sybase_select_db('db1') or die ("ERROR: Cannot select database");

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 7 7

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

sybase_query($sql, $connection) or die ("ERROR: " .↵
sybase_get_last_message() . " (query was $sql)");

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = sybase_query($sql, $connection) or die ("ERROR: " .↵
sybase_get_last_message() . " (query was $sql)");

// check for returned rows

// print if available

if (sybase_num_rows($result) > 0) {

 while($row = sybase_fetch_row($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

} else {

 echo "No records found!";

}

// close connection

sybase_close($connection);

?>

Comments
PHP supports Sybase databases through its Sybase extension. Connections to a
Sybase database server are initialized by calling the sybase_connect() function
with appropriate credentials. Once a connection has been established, a database
is selected with sybase_select_db(), and SQL queries are performed with the
sybase_query() function. The return value of sybase_query() is either a
SQL result object (for SELECT-type queries) or a Boolean value indicating success
or failure (for non-SELECT-type queries). Once all SQL operations have been
concluded, the server connection can be terminated with a call to sybase_close(),
with error messages (if any) retrieved through sybase_last_error_message().

The result set returned by a query can be processed with a number of functions,
of which sybase_fetch_row() is one example. The sybase_fetch_row()
function returns each row of the result set as a numerically indexed array, suitable
for processing in a loop. Alternatives to this approach include the sybase_fetch_
assoc() function, which returns each row as an associative array; the sybase_
fetch_object() function, which returns each row as an object with properties
corresponding to field values; the sybase_fetch_array() function, which returns

 3 7 8 P H P P r o g r a m m i n g S o l u t i o n s

each row as both an associative and numerically indexed array; and the sybase_
result() function, which returns the value of a particular field, given its row and
column offset.

9.5 Working with Oracle

Problem
You want to execute SQL commands on an Oracle server.

Solution
Use PHP’s Oracle extension:

<?php

// open connection

$connection = oci_connect('user', 'pass', 'db1');

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

$stmt = oci_parse($connection, $sql)↵
or die ("ERROR: " . oci_error($connection));

oci_execute($stmt) or die ("ERROR: " . oci_error($stmt));

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$stmt = oci_parse($connection, $sql)↵
or die ("ERROR: " . oci_error($connection));

oci_execute($stmt) or die ("ERROR: " . oci_error($stmt));

// print returned records

while($row = oci_fetch_row($stmt)) {

 echo $row[0] . " = " . $row[1] . "\n";

}

// close connection

oci_close($connection);

?>

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 7 9

Comments
PHP supports Oracle7, Oracle8, and Oracle9 databases through its Oracle extension,
which uses the Oracle Call Interface (OCI) to communicate with the server. Here,
a server connection is initialized with the oci_connect() function. Once the
connection is established, SQL commands are prepared for use with the oci_
parse() function, which returns a statement identifier; this identifier is then passed
to the oci_execute() function to actually be executed on the server. The server
connection can be terminated with a call to oci_close().

For queries that return a result set, the oci_fetch_row() function can be used
in combination with a loop to iterate over the result set and retrieve each record as
an enumerated array. Alternatives to this function include oci_fetch_assoc(),
which retrieves each record as an associative array; oci_fetch_object(), which
represents each record as an object with properties corresponding to field values;
oci_result(), which retrieves the value of an individual field of a record; and
oci_fetch_all(), which returns all the records in the result set as a single
multidimensional array. Errors in connection or statement execution can be retrieved
with a call to oci_error().

9.6 Working with Microsoft SQL Server

Problem
You want to execute SQL commands on a Microsoft SQL server.

Solution
Use PHP’s MS-SQL extension:

<?php

// open connection

$connection = mssql_connect('localhost', 'user', 'pass')↵
or die ("ERROR: Cannot connect");

// select database

mssql_select_db('db1') or die ("ERROR: Cannot select database");

 3 8 0 P H P P r o g r a m m i n g S o l u t i o n s

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

mssql_query($connection, $sql) or die ("ERROR: " .↵
mssql_get_last_message() . " (query was $sql)");

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = mssql_query($connection, $sql)↵
or die ("ERROR: " . mssql_get_last_message() . ↵
" (query was $sql)");

// check for returned rows

// print if available

if (mssql_num_rows($result) > 0) {

 while($row = mssql_fetch_row($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

} else {

 echo "No records found!";

}

// close connection

mssql_close($connection);

?>

Comments
PHP supports Microsoft SQL Server databases through its MS-SQL extension.
Connections to a MS-SQL database server are initialized by calling the mssql_
connect() function with appropriate credentials. Once a connection has been
established, a database is selected with the mssql_select_db() function, and SQL
commands are executed with the mssql_query() function. The server connection
can be terminated with a call to mssql_close().

The mssql_fetch_row() function returns each row of the result set as a
numerically indexed array, suitable for processing in a loop. Alternatives to this
approach include the mssql_fetch_assoc() function, which returns each record
as an associative array; the mssql_fetch_object() function, which returns each
row as an object; and the mssql_result() function, which returns the value of an
individual field given row and column offsets.

Useful ancillary function include mssql_num_rows(), which returns the number
of records in the result set; mssql_rows_affected(), which returns the number

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 8 1

of rows changed by a query; and mssql_get_last_message(), which returns the
last message generated by the server.

9.7 Working with ODBC

Problem
You want to execute SQL commands using Open Database Connectivity (ODBC).

Solution
Use PHP’s ODBC extension:

<?php

// open connection

$connection = odbc_connect('DBI', 'user', 'pass')↵
or die ("ERROR: Cannot connect");

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

odbc_exec($connection, $sql) or die ("ERROR: " .↵
odbc_errormsg($connection) . " (query was $sql)");

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = odbc_exec($connection, $sql) or die ("ERROR: " .↵
odbc_errormsg($connection) . " (query was $sql)");

// check for returned rows

// print if available

if (odbc_num_rows($result) > 0) {

 while($row = odbc_fetch_row($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

} else {

 echo "No records found!";

}

// close connection

odbc_close($connection);

?>

 3 8 2 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP supports interacting with ODBC-compliant databases through its ODBC
extension. To open a connection to such a database, invoke the odbc_connect()
function with an appropriate Data Source Name (DSN), user name, and password.
Once a connection has been established, SQL queries may be executed with the
odbc_exec() function. For queries that return data, the odbc_fetch_row()
function can be used to iterate over the result set, and the database connection can be
closed with the odbc_close() function.

Alternatives to odbc_fetch_row() include the odbc_fetch_array()
function, which returns each record as an associative array; the odbc_fetch_
object() function, which returns each row as an object; and the odbc_result()
function, which returns the value of an individual field in the current row, given the
field offset. Other functions include odbc_num_rows(), which returns the number
of records in the result set, and odbc_errormsg(), which returns the last error
message generated.

9.8 Writing Database-Independent Code

Problem
You want to write code that is portable across different RDBMS implementations.

Solution
Use a database abstraction layer, such as ext/pdo:

<?php

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

$pdo->exec($sql) or die("ERROR: " . implode(":", $pdo->errorInfo()));

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 8 3

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$rslt = $pdo->query($sql) or die("ERROR: " . implode(":",↵
$pdo->errorInfo()));

while ($row = $rslt->fetch()) {

 echo $row[0] . " = " . $row[1] . "\n";

}

// close connection

unset($pdo);

?>

Comments
If you’ve worked with different databases, you’ve probably seen that each database
operates in a slightly different manner from the others. The data types aren’t always
uniform, and many of them come with proprietary extensions (transactions, stored
procedures, and so on) that aren’t supported elsewhere. Additionally, the API to
interact with these databases is not uniform; as this chapter amply illustrates, PHP
itself comes with a different API for each supported database type.

For all these reasons, switching from one database to another is typically
a complex process, and one that usually involves porting data from one system to
another (with the assorted datatyping complications), rewriting your code to use
the new database API, and testing it to make sure it all works. And that’s where
a database abstraction layer can help.

Typically, a database abstraction layer functions as a wrapper around your
database interaction code, exposing a set of generic methods to interact with
a database server. These generic methods are internally mapped to the native API
for each corresponding database, with the abstraction layer taking care of ensuring
that the correct method is called for your selected database type. Additionally,
most abstraction layers also incorporate a generic superset of datatypes, which
get internally converted into datatypes native to the selected RDBMS. With an
abstraction layer in place, therefore, you can transparently use a single generic
call and have the abstraction layer convert it into the native API call. This makes it
simple to switch between databases with minimal impact on code.

A number of different abstraction layers are available for PHP; this listing uses the
PHP Data Objects (PDO) extension, an attempt to bring a Perl-style DBI interface
to PHP. PDO offers database programmers a consistent API that is portable across
different RDBMS by serving as a wrapper around drivers that actually “talk” to the
database server and perform actions on it. When a function call is made through
the PDO extension, PDO transmits the properly formatted information over to the
relevant driver. Once the driver is through, PDO picks up the response and returns it

 3 8 4 P H P P r o g r a m m i n g S o l u t i o n s

to the caller. The driver to be used is stated as the first parameter in the DSN passed
to the class constructor; to use a different driver, simply alter this parameter, leaving
the rest of the code unchanged.

An alternative is to use the ADOdb Database Abstraction Library for PHP, freely
available from http://adodb.sourceforge.net/. Here, a database connection
is represented as an instance of the ADOConnection class. The Connect() and
Close() methods initialize and terminate connections to the server, respectively,
while the Execute() method executes SQL commands. Query results are represented
as instances of the ADORecordset class, and expose methods to retrieve result rows.

Instances of the ADOConnection class are initialized by passing the database
type to the class constructor. This can be seen in the next listing, which uses the type
"mysql" to initialize the ADOdb MySQL driver. In addition to MySQL, the ADOdb
abstraction layer supports a variety of database types, including Oracle, Sybase,
Firebird, dBASE, PostgreSQL, SQLite, and ODBC. In the event of an RDBMS
change, the argument passed to the class constructor must be altered to reflect the
new type; the remaining code can remain untouched, because the abstraction layer
will then internally use a different driver to communicate with the new RDBMS.

Here’s an example of ADOdb in action:

<?php

// include the DB abstraction layer

include "adodb/adodb.inc.php";

// open database connection

$dbh =& NewADOConnection("mysql");

$dbh->Connect('localhost', 'user', 'pass', 'db1')↵
or die("ERROR: Cannot connect");

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

$result = $dbh->Execute($sql) or die("ERROR: " . $dbh->ErrorMsg() .↵
" (query was $sql)");

// create and execute SELECT query

$sql = "SELECT id, name FROM products";

$result = $dbh->Execute($sql) or die("ERROR: " . $dbh->ErrorMsg() .↵
" (query was $sql)");

// check for returned rows

// print if available

if ($result->RecordCount() > 0) {

 while (!$result->EOF) {

 echo $result->fields[0] . " = " . $result->fields[1] . "\n";

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 8 5

 $result->MoveNext();

 }

} else {

 echo "No records found!";

}

// close connection

$dbh->Close();

?>

NOTE

Using an abstraction layer is more inefficient than using native PHP functions, because of the extra
lines of code involved in translating the generic function call into a native PHP function, in keeping
track of abstraction layer variables and in converting between generic and native datatypes. Also,
it’s worth keeping in mind that switching from one RDBMS to another is no small task; careful
planning is needed to ensure that your code, queries, and data types work optimally on the target
system and such switches should not be undertaken lightly.

As of this writing, PDO drivers are available for Sybase, Microsoft SQL Server,
Firebird, MySQL, Oracle, ODBC, PostgreSQL, and SQLite.

9.9 Retrieving the Last-Inserted Record ID

Problem
You want to retrieve the ID of the last inserted record in a table.

Solution
Use PDO’s lastInsertId() method:

<?php

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

 3 8 6 P H P P r o g r a m m i n g S o l u t i o n s

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES (NULL, 'pears')";

$pdo->exec($sql) or die("ERROR: " . implode(":", $pdo->errorInfo()));

// get ID of inserted record

echo "Record successfully inserted with ID " . $pdo->lastInsertId();

// close connection

unset($pdo);

?>

Comments
The technique to obtain the last inserted ID varies from database to database—for
example, Sybase and MS-SQL users must run the command SELECT @@identity,
while SAP-DB users must run the command SELECT table.CURRVAL FROM
DUAL. The PDO abstraction layer lets you make some sense of these different
implementations, by wrapping them all in a generic Insert_ID() method, as
illustrated in the previous listing.

If you’re performing an INSERT or UPDATE query on a MySQL table containing
an AUTO_INCREMENT primary key, you can obtain the last auto-increment ID
generated with the mysqli_insert_id() function. This is equivalent to executing
a SELECT LAST_INSERT_ID() command on the MySQL server. The following
listing demonstrates this:

<?php

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES (NULL, 'pears')";

mysqli_query($connection, $sql) or die("ERROR: " .↵
mysqli_error($connection) . " (query was $sql)");

// get ID of inserted record

echo "Record successfully inserted with ID " .↵
mysqli_insert_id($connection);

// close connection

mysqli_close($connection);

?>

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 8 7

9.10 Counting Altered Records

Problem
You want to count the number of records changed by the last INSERT, UPDATE, or
DELETE query.

Solution
Use the return value of PDO’s exec() method:

<?php

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

// create and execute UPDATE query

$sql = "UPDATE products SET price = price * 1.1 WHERE price < 20";

$numRows = $pdo->exec($sql) or die("ERROR: " . implode(":",↵
$pdo->errorInfo()));

// get number of rows changed

echo $numRows . " record(s) updated";

// close connection

unset($pdo);

?>

Comments
The name of the PHP function to obtain the number of rows affected by a query
varies from database to database—for example, SQLite users can use the PHP
function sqlite_changes(), while Informix users must use the function
ifx_affected_rows(). PHP’s PDO extension offers a more generic technique:
the number of rows affected by a query may be retrieved from the return value of
the corresponding call to exec(), as illustrated in the previous listing.

 3 8 8 P H P P r o g r a m m i n g S o l u t i o n s

If you’re working only with MySQL, the mysqli_affected_rows() function
serves an equivalent function, as illustrated in the next listing:

<?php

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// create and execute UPDATE query

$sql = "UPDATE products SET price = price * 1.1 WHERE price < 20";

mysqli_query($connection, $sql) or die ("ERROR: " .↵
mysqli_error($connection) . " (query was $sql)");

// get number of rows changed

echo mysqli_affected_rows($connection) . " record(s) updated";

// close connection

mysqli_close($connection);

?>

9.11 Protecting Special Characters

Problem
You want to protect special characters, such as quotes or slashes, in a query string.

Solution
Use PDO’s quote() method to protect these special characters with a backslash:

<?php

// define input data

$realname = "Frank D'Souza";

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 8 9

// escape special characters in input

$realname = $pdo->quote($realname);

// create and execute INSERT query

$sql = "INSERT INTO users (realname) VALUES ('$realname')";

$pdo->exec($sql) or die("ERROR: " . implode(":", $pdo->errorInfo()));

echo "Record successfully inserted with query: $sql";

// close connection

unset($pdo);

?>

Comments
It is usually necessary to escape special characters, such as quotes or slashes, in
strings intended for use in an SQL query. For example, to maintain the integrity of
the string “Frank D’Souza” when saving it to a table, it is necessary to protect the
single quote by preceding it with a backslash (\) character. PDO’s quote() method
will automatically do this for you, by finding and protecting all single quotes ('),
double quotes(") and backslashes (\) in a string.

An alternative is to use the addslashes() function, which does the same thing:

<?php

// define input data

$realname = "Frank D'Souza";

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// escape special characters in input

$realname = addslashes($connection, $realname);

// create and execute INSERT query

$sql = "INSERT INTO users (realname) VALUES ('$realname')";

mysqli_query($connection, $sql) or die ("ERROR: " .↵
mysqli_error($connection) . " (query was $sql)");

echo "Record successfully inserted with query: $sql";

// close connection

mysqli_close($connection);

?>

 3 9 0 P H P P r o g r a m m i n g S o l u t i o n s

NOTE

PHP comes with a configuration directive, magic_quotes_gpc, which automatically escapes
all special characters submitted through a form or retrieved through a cookie with backslashes,
just as addslashes() does. If this directive is enabled (the default situation), you should
not run addslashes() on form or cookie data prior to using it in an SQL query. Using
addslashes() in this situation could corrupt your data (by placing a double set of backslashes
before every special character). Read the information provided at http://www.php.net/
manual/en/ref.info.php#ini.magic-quotes-gpc for more.

9.12 Limiting Query Results

Problem
You want to retrieve a subset of the records returned by a SELECT query.

Solution
Use a LIMIT clause in the SQL query (MySQL):

<?php

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// create and execute SELECT query

// limit result set to 2 records starting with #3

$sql = "SELECT id, name FROM products LIMIT 2, 2";

$result = mysqli_query($connection, $sql) or die ("ERROR: " .↵
mysqli_error($connection) . " (query was $sql)");

// check for returned rows

// print if available

if (mysqli_num_rows($result) > 0) {

 while($row = mysqli_fetch_array($result, MYSQLI_BOTH)) {

 echo $row['id'] . " = " . $row['name'] . "\n";

 }

} else {

 echo "No records found!";

}

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 9 1

// close connection

mysqli_close($connection);

?>

Comments
With MySQL, it’s easy to retrieve a subset of the total records in a result set by
adding a LIMIT clause to the query string. This clause takes two parameters, which
specify the record offset to start with and the number of records to display from that
offset. So the query SELECT * FROM tbl LIMIT 2,2 would return records #3
and #4 only.

However, all databases do not support the LIMIT clause—some ignore it
altogether, while others use modified variants (for example, the equivalent statement
in PostgreSQL would be SELECT * FROM tbl LIMIT 2 OFFSET 2, while
in Sybase, it would be SET ROWCOUNT 2). Generically, then, you can solve the
problem by using the ADOdb abstraction layer, freely available from http://
adodb.sourceforge.net/. This layer comes with a SelectLimit() method,
which can be used to restrict the number of rows retrieved and which internally
performs the translation needed for each RDBMS. Here’s an example of it in action:

<?php

// include the DB abstraction layer

include "adodb/adodb.inc.php";

// open database connection

$dbh =& NewADOConnection("postgres");

$dbh->Connect('localhost', 'user', 'pass', 'db1')↵
or die("ERROR: Cannot connect");

// create and execute SELECT query

// limit result set to 2 records starting with #3

$sql = "SELECT id, name FROM products";

$dbh->SetFetchMode(ADODB_FETCH_ASSOC);

$result = $dbh->SelectLimit($sql, 2, 2)↵
or die("ERROR: " . $dbh->ErrorMsg() . " (query was $sql)");

// check for returned rows

// print if available

if ($result->RecordCount() > 0) {

 while (!$result->EOF) {

 echo $result->fields['id'] . " = " .↵

 3 9 2 P H P P r o g r a m m i n g S o l u t i o n s

$result->fields['name'] . "\n";

 $result->MoveNext();

 }

} else {

 echo "No records found!";

}

// close connection

$dbh->Close();

?>

TIP

If you’re curious about the SQL command(s) to limit record ranges in your RDBMS, you’ll find it
instructive to look at the source code for the SelectLimit() function in the ADOdb driver
for your RDBMS.

9.13 Using Prepared Statements

Problem
You want to execute an SQL command multiple times, with different values each
time.

Solution
Use a prepared statement with the PDO extension:

<?php

// define data array

$data = array(

 "10" => "tomatoes",

 "11" => "potatoes",

 "12" => "carrots",

 "13" => "onions",

 "14" => "beans"

);

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 9 3

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

// create prepared statement

$sql = "INSERT INTO products (id, name) VALUES (?, ?)";

$stmt = $pdo->prepare($sql) or die("ERROR: " . implode(":",↵
$pdo->errorInfo()));

// bind parameters to statement

$stmt->bindParam(1, $id);

$stmt->bindParam(2, $name);

// process data array

// execute prepared statement with different values

// on each iteration

foreach ($data as $id => $name) {

 $stmt->execute() or die("ERROR: " . ↵
implode(":", $stmt->errorInfo()));

}

// display message

echo "Record(s) successfully added.";

// close connection

unset($pdo);

?>

Comments
In the event that you need to execute a particular query multiple times with different
values—for example, a series of INSERT statements—it’s a good idea to use
a prepared statement to save time and overhead. A prepared statement is like
a regular SQL statement, except that it contains placeholders for variable data; these
placeholders are replaced with actual values each time the statement is executed.

With PDO, a prepared statement is created by passing PDO’s prepare()
method a SQL statement containing query placeholders, as in the previous listing.
These placeholders can then be bound to variables with the statement object’s
bindParam() method (which must be called for each placeholder), and the
statement can then executed with the object’s execute() method. In the previous
listing, the data for the query comes from a predefined array, and a loop is used to
repeatedly execute the prepared statement, assigning the placeholders new values
from the array on each iteration.

 3 9 4 P H P P r o g r a m m i n g S o l u t i o n s

If you’re using MySQL, a prepared statement is created with the mysqli_
prepare() function, which returns a statement handle. Parameters are bound to
the variable placeholders in the statement with the mysqli_stmt_bind_param()
function, which accepts as arguments the statement handle, a string indicating
the data types of the various variable placeholders (s for string, i for integer, d for
double-precision number), and variables representing each of the placeholders. The
mysqli_stmt_execute() function then executes the prepared query, iterating
over the list of values and assigning them to the variable placeholders in a loop. This
process is clearly illustrated in the next listing:

<?php

// define data array

$data = array(

 "10" => "tomatoes",

 "11" => "potatoes",

 "12" => "carrots",

 "13" => "onions",

 "14" => "beans"

);

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// create prepared statement

$sql = "INSERT INTO products (id, name) VALUES (?, ?)";

$stmt = mysqli_prepare($connection, $sql) or die("ERROR: " .↵
mysqli_error($connection));

// bind parameters to statement

mysqli_stmt_bind_param($stmt, 'is', $id, $name);

// process data array

// execute prepared statement with different values

// on each iteration

foreach ($data as $id => $name) {

 mysqli_stmt_execute($stmt) or ↵
die("ERROR: " . mysqli_stmt_error($stmt));

}

// close statement

mysqli_stmt_close($stmt);

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 9 5

// close connection

mysqli_close($connection);

// display message

echo "Record(s) successfully added.";

?>

Using a prepared statement can provide performance benefits when you have
a single query to be executed a large number of times with different values, as only
the variable data is transmitted to the server each time, not the complete query.
However, this benefit is only available if the database system supports prepared
queries (MySQL, InterBase, and Oracle do, just to name a few); in all other cases,
only simulated functionality is available and prepare() becomes equivalent to
a simple exec(), with no inherent performance gain.

9.14 Performing Transactions

Problem
You want to execute a series of linked SQL commands as an atomic unit (a transaction),
but roll them back in the event of an error.

Solution
Use PDO’s commit() and rollBack() methods:

<?php

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

try {

 // begin a new transaction

 $pdo->beginTransaction();

 3 9 6 P H P P r o g r a m m i n g S o l u t i o n s

 // create and execute two DML queries

 // in case of errors, roll back transaction

 $sql = "INSERT INTO orders (id, qty) VALUES ('4', '20')";

 $pdo->exec($sql);

 $sql = "UPDATE inventory SET qty = qty-20 WHERE id = 4";

 $pdo->exec($sql);

 // commit the changes

 $pdo->commit();

 echo "Transaction completed successfully";

} catch (PDOException $e) {

 // in case of error

 // roll back the transaction

 $pdo->rollBack();

 die("ERROR: " . $e->getMessage());

}

// close connection

unset($pdo);

?>

Comments
In the SQL world, the term transaction refers to a series of SQL statements that are
treated as a single unit by the RDBMS. Typically, a transaction is used to group
together SQL statements that are interdependent; a failure in even one of them
is considered a failure of the group as a whole. Thus, a transaction is said to be
successful only if all the individual statements within it are executed successfully.

The previous listing illustrates this by executing two SQL statements as a
transaction. First, the beginTransaction() method is used to mark the start
of a transaction and turn off database auto-commit—this tells the database that it
should not commit the changes made by each statement until explicitly told to do so.
Next, the SQL statements are executed. If no error occurs, the commit() method
is invoked and the changes are committed to the database permanently. If PDO
generates an exception when executing either of the statements, control passes to the
catch block, which calls the rollBack() method to reset the table to the state it
was in prior to beginning the transaction.

If you’re using MySQL 4.x or later, you can benefit from the native transactional
functions built into ext/mysqli. Here, the mysqli_autocommit() function first
turns off database auto-commit; the mysqli_commit() function saves changes to

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 9 7

the system; and the mysqli_rollback() function rolls changes back in the event
of an error. The following listing illustrates this in greater detail:

<?php

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// turn off transaction auto-commit

mysqli_autocommit($connection, FALSE);

// begin a new transaction

// create and execute two DML queries

// in case of errors, roll back transaction

$sql = "INSERT INTO orders (id, qty) VALUES ('4', '20')";

if (mysqli_query($connection, $sql) !== TRUE) {

 echo "ERROR: " . mysqli_error($connection) . " (query was $sql)";

 mysqli_rollback($connection);

 exit();

}

$sql = "UPDATE inventory SET qty = qty-20 WHERE id = 4";

if (mysqli_query($connection, $sql) !== TRUE) {

 echo "ERROR: " . mysqli_error($connection) . " (query was $sql)";

 mysqli_rollback($connection);

 exit();

}

// no errors

// commit the transaction

mysqli_commit($connection);

echo "Transaction completed successfully";

// close connection

mysqli_close($connection);

?>

NOTE

As of MySQL 4.x, native ACID-compliant (Atomicity, Consistency, Isolation, and Durability)
transactions are only possible with InnoDB and BerkeleyDB tables. For other table types,
transactional environments need to be implemented at the application level, through the use
of table locks or other mechanisms.

 3 9 8 P H P P r o g r a m m i n g S o l u t i o n s

9.15 Executing Multiple SQL Commands at Once

Problem
You want to execute two or more SQL commands at once.

Solution
Use a subquery:

<?php

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

// create nested query

$sql = "SELECT name, price FROM products where id IN (SELECT id↵
FROM inventory WHERE qty <= 200)";

$rslt = $pdo->query($sql) or die("ERROR: " . implode(":",↵
$pdo->errorInfo()));

while ($row = $rslt->fetch()) {

 echo $row[0] . " = " . $row[1] . "\n";

}

// close connection

unset($pdo);

?>

Comments
Subqueries, as the name suggests, are queries nested inside other queries. They make
it possible to use the results of one query directly in the conditional tests or FROM
clauses of other queries. The most common type of subquery is a SELECT within
a SELECT (also called a subselect), such that the results of the inner SELECT serve
as values for the WHERE clause of the outer SELECT. This is the type illustrated in
the previous listing, and it’s handled in exactly the same manner as any other SQL
query—executed with PDO’s query() method and processed with its fetch() or
similar method.

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 3 9 9

Many database systems also support multistatement queries, wherein multiple SQL
statements are concatenated into a single query string with semicolons and executed
together as a single block. This is illustrated in the listing that follows, which uses the
mysqli_multi_query() function to execute one such statement block in a MySQL
database. Individual record sets resulting from the multistatement query are retrieved
with the mysqli_store_result() function, and processed in the usual way.

<?php

// open connection

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// create array of queries

$queries[] = "SELECT name, price FROM products";

$queries[] = "SELECT name, qty FROM products,orders WHERE↵
products.id = orders.id";

// join individual queries into composite query

$multiQuery = implode(";", $queries);

// execute composite query

// process the results

$multiResult = mysqli_multi_query($connection, $multiQuery)↵
or die("ERROR: An error occurred in one of the queries");

$count = 0;

do {

 // get next result set

 if ($result = mysqli_store_result($connection)) {

 // print the corresponding query string

 echo "\n" . $queries[$count] . ":\n";

 // print the records

 while ($row = mysqli_fetch_row($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

 // free the result set

 mysqli_free_result($result);

 }

 // increment counter

 // repeat for next result set

 $count++;

} while (mysqli_next_result($connection));

 4 0 0 P H P P r o g r a m m i n g S o l u t i o n s

// close connection

mysqli_close($connection);

?>

9.16 Storing and Retrieving Binary Data

Problem
You want to save a binary file to a table, or retrieve binary data from a table and save
it to a file.

Solution
To save a binary file to a database, create a table containing a field of type BLOB and
write a PHP script to read the file’s contents and INSERT it into the BLOB field:

<?php

// set file name

$file = "img1008.jpg";

// read file contents into variable

// make sure script has read permissions!

if (file_exists($file)) {

 $fileData = addslashes(file_get_contents($file));

} else {

 die ("ERROR: Cannot find file");

}

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

try {

 // create and execute INSERT query

 $sql = "INSERT INTO bindata (data, name) VALUES ('$fileData',↵
'" . basename($file) . "')";

 $pdo->exec($sql);

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 4 0 1

 // display success message

 echo "File successfully added to database with ID " .↵
$pdo->lastInsertId();

} catch (PDOException $e) {

 // in case of error

 // display error message

 die("ERROR: " . $e->getMessage());

}

// close connection

unset($pdo);

?>

To retrieve binary data from a table, use a SELECT query to obtain the contents of
the BLOB field and write the data to a file:

<?php

// attempt a connection

try {

 $pdo = new PDO('mysql:dbname=db1;host=localhost', 'user', 'pass');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

} catch (PDOException $e) {

 die("ERROR: Cannot connect: " . $e->getMessage());

}

// create and execute SELECT query

// use record ID returned by previous script

// to retrieve the binary data

try {

 $sql = "SELECT data, name FROM bindata WHERE id = 1";

 $rslt = $pdo->query($sql);

 $row = $rslt->fetch();

 file_put_contents($row[1] . '.new', $row[0]);

 echo "File saved to [" . $row[1] . ".new]";

} catch (PDOException $e) {

 // in case of error

 // display error message

 die("ERROR: " . $e->getMessage());

}

// close connection

unset($pdo);

?>

 4 0 2 P H P P r o g r a m m i n g S o l u t i o n s

Comments
Most databases support the Binary Large Object data type, intended specifically for
use with binary data. Adding (retrieving) binary data to (from) such a database is
then simply a matter of manipulating the contents of the BLOB field with SQL.

The previous listings illustrate the two parts of the process. The first script reads
the contents of the file into a string with the binary-safe file_get_contents()
function and saves it to the database with an INSERT query (after first protecting
special characters in the binary data string with addslashes()). The second uses
a SELECT query to retrieve the binary data and save it to disk with the file_put_
contents() function. The file name is stored in the database with the binary data
to make recomposing the file into its original form easier.

A common application of this listing is a Web-based file upload tool, which
enables users to upload binary files to a database through their Web clients. This
is easily accomplished by using PHP’s file upload support in combination with
a MySQL table containing a BLOB field, as illustrated here:

<?php

// display file upload form

if (!$_POST['submit']) {

?>

 <form enctype="multipart/form-data" ↵
action="<?=$_SERVER['PHP_SELF']?>" method="post">

 <input type="hidden" name="MAX_FILE_SIZE" value="8000000">

 Select file:

 <input type="file" name="data">

 <input type="submit" name="submit" value="Upload File">

 </form>

<?php

// if form has been submitted

// process the upload

} else {

 // check uploaded file size

 if ($_FILES['data']['size'] == 0) {

 die("ERROR: Zero byte file upload");

 }

 // check if this is a valid upload

 if (!is_uploaded_file($_FILES['data']['tmp_name'])) {

 die("ERROR: Not a valid file upload");

 }

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 4 0 3

 // read file contents into variable

 $fileData = addslashes(file_get_contents($_FILES['data']↵
['tmp_name']));

 // get file type and name

 $fileType = $_FILES['data']['type'];

 $fileName = $_FILES['data']['name'];

 // open connection to MySQL server

 $connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

 // create and execute INSERT query

 $sql = "INSERT INTO bindata (data, name, type) VALUES↵
('$fileData', '$fileName', '$fileType')";

 mysqli_query($connection, $sql) or die ("ERROR: " . ↵
mysqli_error($connection) . " (query was $sql)");

 // display success message

 echo "File successfully added to database with ID " .↵
mysqli_insert_id($connection);

 // close connection

 mysqli_close($connection);

}

?>

Here, an HTML form enables the user to select a local file and upload it to the
server. After some basic checks to ensure that the upload is valid, an INSERT query
saves the contents of the file to the table. In addition to saving file contents, this
script also takes note of the original file name and file type, storing those details in
the database as well.

TIP

Read more about form-based file uploads with PHP in the listing in “8.16: Uploading Files Through
Forms.”

 4 0 4 P H P P r o g r a m m i n g S o l u t i o n s

Of course, this is only half of the puzzle—the other half involves retrieving the
file from the database. Here’s the code to accomplish this:

<?php

// open connection to MySQL server

$connection = mysqli_connect('localhost', 'user', 'pass', 'db1')↵
or die ("ERROR: Cannot connect");

// if file ID provided

// retrieve file and prompt user

// to save to disk

if ($_GET['id'] && is_numeric($_GET['id'])) {

 $sql = "SELECT data, name, type FROM bindata WHERE id = ↵
" . $_GET['id'];

 $result = mysqli_query($connection, $sql) or die ("ERROR: " . ↵
mysqli_error($connection) . " (query was $sql)");

 if (mysqli_num_rows($result) == 1) {

 $row = mysqli_fetch_row($result);

 header("Content-Type: " . $row[2]);

 header("Content-Disposition: attachment; filename=" . $row[1]);

 echo $row[0];

 } else {

 echo "No records found!";

 }

// if no file ID provided

// display file list

} else {

 $sql = "SELECT id, name FROM bindata";

 $result = mysqli_query($connection, $sql)↵
or die ("ERROR: " . mysqli_error($connection) . " (query was $sql)");

 if (mysqli_num_rows($result) > 0) {

 while($row = mysqli_fetch_row($result)) {

 echo "<a href=" . $_SERVER['PHP_SELF'] . "?id=" . $row[0] .↵
">" . $row[1] . "
";

 }

 } else {

 echo "No records found!";

 }

}

// close connection

mysqli_close($connection);

?>

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 4 0 5

This script actually performs one of two actions depending on whether or not it
is called with a file ID. If called without any parameters, it connects to the database
server and retrieves a list of all files currently stored in it. Each file name in the list
is hyperlinked, via its unique file ID, back to the same script. Note the use of the
special $_SERVER[‘PHP_SELF’] variable for this purpose.

Clicking any such hyperlink causes the script to be called again, this time with a
file ID; the script uses this file ID to retrieve the contents of the corresponding BLOB
field. The script also sends the user’s browser HTTP headers indicating that what
follows is binary data; this triggers a user dialog asking for a location to save the
data. Once saved to disk, the file can be displayed with an appropriate viewer.

9.17 Caching Query Results
Problem
You want to improve response times by caching the output of frequently used
SELECT queries.

Solution
Use the ADOdb abstraction layer to implement a query cache:

<html>

<head></head>

<body>

<?php

// include the DB abstraction layer

include "adodb/adodb.inc.php";

// set the cache location

$ADODB_CACHE_DIR = "cache/";

// open database connection

$dbh =& NewADOConnection("mysql");

$dbh->Connect('localhost', 'user', 'pass', 'db1') ↵
or die("ERROR: Cannot connect");

 4 0 6 P H P P r o g r a m m i n g S o l u t i o n s

// create and execute SELECT query

// use previously-cached result if available

$sql = "SELECT products.id, products.name, inventory.qty ↵
FROM products,inventory WHERE products.id = inventory.id";

$result = $dbh->CacheExecute(180, $sql) or die("ERROR: " .↵
$dbh->ErrorMsg() . " (query was $sql)");

// check for returned rows

// print as table, if available

if ($result->RecordCount() > 0) {

 echo "<table border=1 cellspacing=0 cellpadding=5>";

 while (!$result->EOF) {

 echo "<tr>\n";

 echo "<td>" . $result->fields[0] . "</td>\n";

 echo "<td>" . $result->fields[1] . "</td>\n";

 echo "<td>" . $result->fields[2] . "</td>\n";

 echo "</tr>\n";

 $result->MoveNext();

 }

 echo "</table>";

} else {

 echo "No records found!";

}

// close connection

$dbh->Close();

?>

</body>

</html>

Comments
Complex queries take longer to execute and can significantly affect the response
time of your script, especially when coupled with a slow or overloaded database
server. For this reason, it’s a good idea to cache the output of frequently accessed
scripts. A simple caching mechanism can be implemented via the ADOdb database
abstraction layer, available from http://adodb.sourceforge.net/ and is
discussed in the listing in “9.8: Writing Database-Independent Code.”

The business logic to use a query cache is fairly simple: check if the required
data already exists in the cache, retrieve and use it if it does, generate it and save
a copy to the cache if it doesn’t. With ADOdb, most of this is handled internally by

 C h a p t e r 9 : W o r k i n g w i t h D a t a b a s e s 4 0 7

the class; all you really need to do is replace the usual call to Execute() with a call
to CacheExecute().

This listing illustrates the process, caching the results of the SELECT query for
3 minutes (180 seconds) following the initial request. Other requests for the same
query within this time period will be served from the cache, without any connection
being made to the database server.

The first argument to CacheExecute() is the number of seconds to cache the
query results; the second is, obviously, the query string itself. The remainder of
the script remains unchanged—a cached resultset is processed in exactly the same
manner as a non-cached one.

TIP

You can use the CacheFlush() method to flush all queries from the cache.

NOTE

If you’re using MySQL 4.x, you should know that the RDBMS includes a built-in query cache, which
can substantially improve performance by caching the results of common queries and returning this
cached data to the caller without having to re-execute the query each time. Read more about this
feature at http://dev.mysql.com/doc/mysql/en/query-cache.html.

This page intentionally left blank

409

CHAPTER

10
Working with XML

IN THIS CHAPTER:
10.1 Retrieving Node and Attribute Values
10.2 Modifying Node and Attribute Values
10.3 Processing XML
10.4 Creating XML
10.5 Adding or Removing XML Nodes
10.6 Collapsing Empty XML Elements
10.7 Counting XML Element Frequency
10.8 Filtering XML Nodes by Namespace

10.9 Filtering XML Nodes with XPath
10.10 Validating XML
10.11 Transforming XML
10.12 Exporting Data to XML
10.13 Working with RDF Site Summaries
10.14 Using the Google Web APIs
10.15 Using the Amazon E-Commerce Service
10.16 Creating Trackbacks

 4 1 0 P H P P r o g r a m m i n g S o l u t i o n s

As XML has become more and more ubiquitous on (and off) the Web, so too
has PHP’s support for it improved. A few years ago, parsing an XML file
with PHP meant struggling with custom element handlers, unintuitive tree

navigation functions, and an XML implementation that often differed from release
to release. All of this has changed: PHP now has a standard XML implementation
based on the GNOME XML library, and has significantly improved its XML parsing
capabilities with its SimpleXML extension.

This chapter covers common listings for parsing and using XML documents
with PHP, including processing node and attribute values; creating custom node
collections; validating XML against Document Type Definitions (DTDs) or
Schemas; transforming XML with XSLT style sheets; creating and parsing RSS
feeds; and interfacing with external Web services.

NOTE

The listings in this chapter use PHP’s SimpleXML, DOM (Document Object Model), XSLT (XSL
Transformations), and SOAP (Simple Object Access Protocol) extensions. The SimpleXML and DOM
extensions are usually enabled by default, while the SOAP and XSLT extensions must be activated
manually. On Windows systems, this support can be enabled by activating the appropriate DLL
(Dynamic Link Library) file; on *NIX systems, it usually involves activating the appropriate
extension and recompiling PHP. Look in the PHP manual, at http://www.php.net/
manual/en/ for specific instructions on how to activate each extension.
 The example XML files used in this chapter can be obtained from the downloadable code
archive, at http://www.php-programming-solutions.com.

10.1 Retrieving Node and Attribute Values

Problem
You want to retrieve the value of a specific node or attribute from an XML document
instance.

Solution
Use SimpleXML to locate the node or attribute and retrieve its value:

<?php

// define XML data string

$xmlData = <<< END

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 1 1

<?xml version="1.0"?>

<data>

 <color red="128" green="0" blue="128">purple</color>

</data>

END;

// read XML data string

$xml = simplexml_load_string($xmlData)↵
or die("ERROR: Cannot create SimpleXML object");

// read attribute values

$hexColor = sprintf("#%02x%02x%02x", $xml->color['red'],↵
$xml->color['green'], $xml->color['blue']);

// read node data

// result: "The color purple is #800080 in hexadecimal"

echo "The color " . $xml->color . " is " . $hexColor . " in hexadecimal";

?>

Comments
In this listing, a call to simplexml_load_string() converts the XML data
into a SimpleXML object. Once such an object has been initialized, elements are
represented as object properties and attribute collections as associative arrays. Node
values can thus be accessed using standard object->property notation, beginning
with the root element and moving down the hierarchical path of the document tree,
while attribute values can be accessed as keys of the attribute array associated with
each object property.

If there is more than one element with the same name at a particular level of the
XML hierarchy, it is represented, with its partners, in a numerically indexed array.
Such a collection can be processed with a foreach() loop, as in the following listing:

<?php

// create XML data string

$xmlData =<<< END

<?xml version="1.0"?>

<collection>

 <color>red</color>

 <color>blue</color>

 <color>green</color>

 <color>yellow</color>

</collection>

END;

 4 1 2 P H P P r o g r a m m i n g S o l u t i o n s

// read XML data

$xml = simplexml_load_string($xmlData)↵
or die("ERROR: Cannot create SimpleXML object");

// process node collection

// result: "red blue green yellow"

foreach ($xml->color as $color) {

 echo "$color ";

}

?>

Or, if you don’t know the element name, use the children() method to iterate
over all the children of a particular node:

<?php

// create XML data string

$xmlData =<<< END

<?xml version="1.0"?>

<collection>

 <color>red</color>

 <color>blue</color>

 <color>green</color>

 <color>yellow</color>

</collection>

END;

// read XML data

$xml = simplexml_load_string($xmlData)↵
or die("ERROR: Cannot create SimpleXML object");

// process node collection

// result: "color: red color: blue color: green color: yellow "

foreach ($xml->children() as $name => $data) {

 echo "$name: $data ";

}

?>

Note that you can also iterate over the attribute collection for a specific element
with the attributes() method, as illustrated here:

<?php

// define XML data string

$xmlData = <<< END

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 1 3

<?xml version="1.0"?>

<data>

 <element shape="rectangle" height="10" width="5" length="7" />

</data>

END;

// read XML data string

$xml = simplexml_load_string($xmlData)↵
or die("ERROR: Cannot create SimpleXML object");

// print attributes

// result: "shape: rectangle; height: 10; width: 5; length: 7; "

foreach ($xml->element->attributes() as $name => $data) {

 echo "$name: $data; ";

}

?>

10.2 Modifying Node and Attribute Values

Problem
You want to alter the value of a node or an attribute in an XML document.

Solution
Use SimpleXML to read the XML file, assign new values to elements or attributes,
and save the changes back to the file:

<?php

// read XML tree

$xml = simplexml_load_file("data.xml")↵
or die("ERROR: Cannot create SimpleXML object");

// alter value of node <weight>

$xml->weight = 3000;

// alter value of attribute <weight units=>

$xml->weight['units'] = "gm";

 4 1 4 P H P P r o g r a m m i n g S o l u t i o n s

// write modified tree back to file as XML string

file_put_contents("data.xml", $xml->asXML()) ↵
or die("ERROR: Could not write to file");

echo "XML file successfully updated";

?>

Comments
In this listing, the original XML file is first read in, and elements and attributes are
altered by assigning new values to the corresponding object properties and arrays.
The asXML() method, typically used to output the XML tree as a string, is combined
with the file_put_contents() function to overwrite the original XML document
with the new data.

TIP

You can also modify node or attribute values with the DOM extension’s replaceChild()
method. See the listing in “10.5: Adding or Removing XML Nodes” for an example.

10.3 Processing XML

Problem
You want to recursively process an XML document.

Solution
Write a recursive function to traverse the XML document tree:

<?php

// create XML data string

$xmlData =<<< END

<?xml version="1.0"?>

<movie>

 <title>The Matrix</title>

 <credits>

 <actor>

 <name>Keanu Reeves</name>

 <character>Neo</character>

 </actor>

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 1 5

 <actor>

 <name>Laurence Fishburne</name>

 <character>Morpheus</character>

 </actor>

 <actor>

 <name>Carrie-Anne Moss</name>

 <character>Trinity</character>

 </actor>

 <director>

 <name>Andy Wachowski</name>

 </director>

 <director>

 <name>Larry Wachowski</name>

 </director>

 </credits>

 <year>1999</year>

 <duration units="min">120</duration>

</movie>

END;

// read XML data

$xml = simplexml_load_string($xmlData)↵
or die("ERROR: Cannot create SimpleXML object");

// function to recursively iterate over XML tree

// printing node names and values

function xmlTraverse($node) {

 foreach ($node->children() as $name => $data) {

 if (trim($data) != "") {

 echo "$name: [$data, " . strlen($data) . "]\n";

 }

 xmlTraverse($data);

 }

}

// traverse XML tree

// result: "title: [The Matrix, 10] name: [Keanu Reeves, 12] ..."

xmlTraverse($xml);

?>

 4 1 6 P H P P r o g r a m m i n g S o l u t i o n s

Comments
Because an XML document is a hierarchical tree of nested elements, the most
efficient way to process it is with a recursive function that calls itself to traverse the
entire tree. This is the technique illustrated in the previous listing.

The recursive xmlTraverse() function begins with the root element and looks
for children with SimpleXML’s children() function. If children exist, the function
loops over the child list, repeatedly calling itself to process each node until it
reaches the end of the list. The process continues until no further nodes remain to be
processed. At each stage, the current node name and value are printed.

Alternatively, consider using an Iterator from the Standard PHP Library (SPL).
Iterators are ready-made, extensible constructs designed specifically to loop over
item collections—directories, files, class methods, and XML trees. A predefined
SimpleXMLIterator already exists and it’s not difficult to extend this for recursive
array processing. Here’s how:

<?php

// create XML data string

$xmlData =<<< END

<?xml version="1.0"?>

<movie>

 <title>The Matrix</title>

 <credits>

 <actor>

 <name>Keanu Reeves</name>

 <character>Neo</character>

 </actor>

 <actor>

 <name>Laurence Fishburne</name>

 <character>Morpheus</character>

 </actor>

 <actor>

 <name>Carrie-Anne Moss</name>

 <character>Trinity</character>

 </actor>

 <director>

 <name>Andy Wachowski</name>

 </director>

 <director>

 <name>Larry Wachowski</name>

 </director>

 </credits>

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 1 7

 <year>1999</year>

 <duration units="min">120</duration>

</movie>

END;

// read XML data

$xml = simplexml_load_string($xmlData, "SimpleXMLIterator")↵
or die("ERROR: Cannot create SimpleXML object");

// recursively iterate over XML tree

foreach(new RecursiveIteratorIterator($xml, true) as $name => $data)

{

 if (trim($data) != "") {

 echo "$name: [$data, " . strlen($data) . "]\n";

 }

}

?>

The process of traversing a series of nested directories is significantly simpler
with the SPL at hand. First, initialize a SimpleXMLIterator() object and pass it
the XML tree to be processed. Next, initialize a RecursiveIteratorIterator() object
(this is an Iterator designed solely for the purpose of iterating over other recursive
Iterators) and pass it the newly-minted SimpleXMLIterator(). You can now
process the results with a foreach() loop.

You can read more about the SimpleXMLIterator and the RecursiveIteratorIterator
at http://www.php.net/~helly/php/ext/spl/.

10.4 Creating XML

Problem
You want to generate an XML document using PHP method calls.

Solution
Use PHP’s DOM extension to create a DOM tree and append nodes to it:

<?php

// initialize DOM object

$xml = new DOMDocument("1.0");

 4 1 8 P H P P r o g r a m m i n g S o l u t i o n s

// add root node <listing>

$root = $xml->createElement("list");

$xml->appendChild($root);

// add element <description> to root

$desc = $xml->createElement("description");

$root->appendChild($desc);

// add <description> content

$desc->appendChild($xml->createTextNode("Sam's Shopping List"));

// add comment

$root->appendChild($xml->createComment("item list follows"));

// add <item> child element

// add quantities as attributes

$items = $xml->createElement("items");

$root->appendChild($items);

$item = $xml->createElement("item");

$items->appendChild($item);

$item->appendChild($xml->createTextNode("eggs"));

$item->setAttribute("units", 3);

unset($item);

$item = $xml->createElement("item");

$items->appendChild($item);

$item->appendChild($xml->createTextNode("salt"));

$item->setAttribute("units", "100 gm");

// add CDATA block

$items->appendChild($xml->createCDATASection("You can't make↵
an omelette without breaking eggs"));

// add PI

$root->appendChild($xml->createProcessingInstruction(↵
"xml-dummy-pi", "shop('now')"));

// display final tree as HTML...

$xml->formatOutput = true;

echo "<xmp>" . $xml->saveXML() . "</xmp>";

// ...or write it to a file as XML

$xml->save("list.xml") or die("ERROR: Could not write to file");

?>

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 1 9

Comments
PHP’s SimpleXML extension does not support node creation, so this task is better
handled with PHP’s DOM extension, which comes with a wide array of methods
designed to help you design an XML document instance dynamically. To get started,
create an instance of the DOMDocument class, and then use its createElement()
method to create element objects. These element objects may then be attached to
a parent node by calling the parent node object’s appendChild() method. The
process is illustrated in the previous listing.

Of course, an XML document is much more than just elements—which is why
the DOM extension also offers createTextNode(), createCDATASection(),
createProcessingInstruction(), and createComment() methods to attach
text, CDATA blocks, PIs (Processing Instructions), and comments to the DOM tree
respectively. Attributes for an element are set by calling the corresponding element
object’s setAttribute() method with appropriate parameters.

Once the tree has been generated, it may be retrieved as a string with the primary
DOMDocument object’s saveXML() method, or written to a file with the object’s
save() method.

10.5 Adding or Removing XML Nodes

Problem
You want to add (remove) nodes to (from) an XML document instance.

Solution
Use the appendChild(), replaceChild(), and removeChild() methods from
PHP’s DOM extension:

<?php

// define XML data string

$xmlData = <<< END

<?xml version="1.0"?>

<favorites>

 <pet>Humphrey Hippo</pet>

 <flavor>chocolate</flavor>

 <movie>Star Wars</movie>

</favorites>

END;

 4 2 0 P H P P r o g r a m m i n g S o l u t i o n s

// read XML data

$xml = new DOMDocument();

$xml->formatOutput = true; // format output

$xml->preserveWhiteSpace = false; // discount whitespace

$xml->loadXML($xmlData) or die("ERROR: ↵
Cannot create DOMDocument object");

// print the original XML tree

echo "<xmp>OLD:\n" . $xml->saveXML() . "</xmp>";

// get document element

$root = $xml->documentElement;

// add a node before <movie>

$movie = $root->childNodes->item(2);

$book = $xml->createElement("book");

$root->insertBefore($book, $movie);

$book->appendChild($xml->createTextNode("The Lord Of The Rings"));

// add a node after <movie>

$toy = $xml->createElement("toy");

$toy->appendChild($xml->createTextNode("Stuffed bear"));

$root->appendChild($toy);

// replace <flavor> with <icecream>

$flavour = $root->childNodes->item(1);

$icecream = $xml->createElement("icecream");

$icecream->appendChild($xml->createTextNode("strawberry"));

$root->replaceChild($icecream, $flavour);

// delete <movie>

$movie = $root->childNodes->item(3);

$root->removeChild($movie);

// print the modified XML tree

echo "<xmp>NEW:\n" . $xml->saveXML() . "</xmp>";

?>

Comments
PHP’s SimpleXML extension doesn’t support node addition or removal, so this task is
best addressed with PHP’s DOM extension. Adding a node to an existing DOM tree is
fairly simple—create a new object with the appropriate createItem() method, and
append it to the tree by using the parent node object’s appendChild() method to

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 2 1

link the two. Removing a node is also fairly easy—use the primary DOMDocument
object’s removeChild() method and pass it the node to be removed.

NOTE

If what you’re really after is modifying a node value, take a look at the listing in “10.2: Modifying
Node and Attribute Values,” which shows you how to do it with SimpleXML.
 For those XML elements that cannot be modified via SimpleXML (for example, Comments
and PIs), the listing in “10.5: Adding or Removing XML Nodes” also illustrates the process of
modifying a node with PHP’s DOM extension: create a new node object with the appropriate
createItem() method and then use the replaceChild() method to overwrite an
existing node with the newly minted one.

10.6 Collapsing Empty XML Elements

Problem
You want to collapse empty tags in an XML document.

Solution
Use PEAR’s XML_Util class:

<?php

$xmlData =<<< END

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head></head>

 <body>

 <div>Content here.</div>

 <p></p>

 <div>Content here.</div>

 </body>

</html>

END;

// include class

include "XML/Util.php";

 4 2 2 P H P P r o g r a m m i n g S o l u t i o n s

// collapse empty tags and print

echo XML_Util::collapseEmptyTags($xmlData);

?>

Comments
For elements that have no content, such as <name></name>, the XML specification
suggests the use of empty-element tags, such as <name />. Available from
http://pear.php.net/package/XML_Util, PEAR’s XML_Util class provides
an automated way to accomplish this change via its collapseEmptyTags()
method. One of the most common uses for this method is illustrated in the previous
listing: replace HTML’s <p></p> sequence with the “better” <p /> sequence.

10.7 Counting XML Element Frequency

Problem
You want to count the frequency of occurrence of a particular element or attribute in
an XML document.

Solution
Use PEAR’s XML_Statistics class:

<?php

$xmlData =<<< END

<?xml version='1.0'?>

<library>

 <movie>

 <title>The Matrix</title>

 <cast>

 <person>Keanu Reeves</person>

 <person>Laurence Fishburne</person>

 <person>Carrie-Anne Moss</person>

 </cast>

 </movie>

 <movie>

 <title rating="3">Mission: Impossible III</title>

 <cast>

 <person>Tom Cruise</person>

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 2 3

 <person>Ving Rhames</person>

 <person>Laurence Fishburne</person>

 </cast>

 </movie>

 <movie>

 <title rating="5">Minority Report</title>

 <cast>

 <person>Tom Cruise</person>

 <person>Max von Sydow</person>

 </cast>

 </movie>

</library>

END;

// include class

include "XML/Statistics.php";

// analyze XML string

$obj = new XML_Statistics();

$obj->analyzeString($xmlData);

// count total number of elements

// result: "Total number of elements: 18"

echo "Total number of elements: " . $obj->countTag() . "\n";

// count total number of <person> elements

// result: "Total number of elements: 8"

echo "Total number of <person> elements: " .↵
$obj->countTag('person') . "\n";

// count total number of attributes

// result: "Total number of attributes: 2"

echo "Total number of attributes: " . $obj->countAttribute() . "\n";

// count total number of text elements

// result: "Total number of text elements: 11"

echo "Total number of text elements: " . $obj->countDataChunks() . "\n";

?>

Comments
PEAR’s XML_Statistics class, available from http://pear.php.net/
package/XML_Statistics, enables you to retrieve information on the number
of elements, attributes, CDATA blocks, PIs, and entities within an XML file

 4 2 4 P H P P r o g r a m m i n g S o l u t i o n s

or string. Once an object of the class is initialized, the analyzeString() or
analyzeFile() method statistically analyzes the XML data and builds an internal
frequency table for the data within it. The countTag(), countAttribute(),
and countDataChunks() methods can then be used to obtain totals for the
number of elements, attributes, and character data blocks respectively; these totals
may be further filtered by supplying a specific element or attribute name to the
corresponding method.

NOTE

This example also requires the XML_Parser class from http://pear.php.net/
package/XML_Parser.

10.8 Filtering XML Nodes by Namespace

Problem
You want to find only those nodes belonging to a particular namespace.

Solution
Use SimpleXML’s children() method with the namespace URI (Universal
Resource Identifier):

<?php

// define XML data string

// containing namespaces

$xmlData = <<< END

<?xml version="1.0"?>

<data xmlns:home="http://www.some.domain/xmlns/home" ↵
xmlns:work="http://www.some.domain/xmlns/work">

 <home:file>music.txt</home:file>

 <work:file>accounts.dat</work:file>

 <work:file>inbox.mbx</work:file>

 <home:file>expenses.xls</home:file>

 <home:file>addressbook.doc</home:file>

</data>

END;

// read XML data

$xml = simplexml_load_string($xmlData);

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 2 5

// process nodes in "work" namespace

// result: "accounts.dat inbox.mbx "

foreach ($xml->children("http://www.some.domain/xmlns/work") as $file)

{

 echo "$file ";

}

?>

Comments
It’s easy to isolate only those child nodes belonging to a particular namespace if
you’re using SimpleXML: just pass the namespace URI to the children() method
as an additional argument. In this example, this technique has been used to isolate all
the nodes in the "work" namespace under the document element. The resulting node
collection can then be processed in the usual manner, with a foreach() or other
loop.

10.9 Filtering XML Nodes with XPath

Problem
You want to find only those nodes matching a particular XPath location path.

Solution
Use SimpleXML’s xpath() method:

<?php

$xmlData =<<< END

<?xml version="1.0"?>

<data>

 <item>

 <id>20</id>

 <name>mangoes</name>

 <price>11</price>

 </item>

 <item>

 <id>22</id>

 <name>strawberries</name>

 <price>5</price>

 </item>

 4 2 6 P H P P r o g r a m m i n g S o l u t i o n s

 <item>

 <id>23</id>

 <name>grapes</name>

 <price>25</price>

 </item>

</data>

END;

// read XML data

$xml = simplexml_load_string($xmlData)↵
or die("ERROR: Cannot create SimpleXML object");

// create a custom collection of <name> nodes

// using an XPath query

// result: "mangoes strawberries grapes "

foreach ($xml->xpath('//name') as $name) {

 echo "$name ";

}

Comments
XPath provides a standard addressing mechanism for an XML document, making it
easy to access and manipulate every element, attribute, and text node on the XML
document tree.

SimpleXML supports building custom node collections via its xpath() method.
This method accepts an XPath location path (either absolute or relative) and selects
all the nodes matching that path. In this example, the //name shortcut selects
<name> elements anywhere below the document element and returns them as a node
collection that can be processed in a loop.

TIP

For a friendly introduction to XPath, visit http://www.melonfire.com/
community/columns/trog/article.php?id=83.

10.10 Validating XML

Problem
You want to validate an XML document instance against a DTD or XML Schema.

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 2 7

Solution
Use PHP’s DOM extension to perform validation using the validate() method for
a DTD:

<?php

// read XML data

$xml = new DOMDocument();

$xml->load("data-1.xml") or die("ERROR: Cannot create DOMDocument ↵
object");

// validate XML against DTD

// result: "Valid data"

echo $xml->validate() ? "Valid data" : "Invalid data";

?>

Use PHP’s DOM extension to perform validation using the schemaValidate()
method for an XML Schema:

<?php

// read XML data

$xml = new DOMDocument();

$xml->load("data-2.xml") or die("ERROR: Cannot create DOMDocument ↵
object");

// validate XML against XML Schema

// result: "Valid data"

echo $xml->schemaValidate("data.xsd") ? "Valid data" : "Invalid data";

?>

Comments
Data validation is an important part of parsing an XML document instance. As of
this writing, SimpleXML merely ensures that XML documents are well-formed; it
offers no way of testing them against DTDs or the new XML Schemas. Therefore,
to test an XML document for validity, it is necessary to use PHP’s DOM extension,
which offers validate() and schemaValidate() methods for this purpose.

The validate() method automatically looks up the name of the DTD file
in the XML document instance, while the schemaValidate() method requires
you to specify the name and path to the schema file as an argument. Both methods
return false if the document instance does not match the rules laid down in the
DTD/Schema, and the validate() method also returns false if no DTD declaration
exists within the document instance.

 4 2 8 P H P P r o g r a m m i n g S o l u t i o n s

10.11 Transforming XML

Problem
You want to transform an XML document instance using an XSLT style sheet.

Solution
Use PHP’s DOM and XSLT extensions together:

<?php

// read XML data

$xml = new DOMDocument;

$xml->load('review.xml');

// read XSL stylesheet data

$xsl = new DOMDocument;

$xsl->load('review.xsl');

// initialize XSLT engine

$xslp = new XSLTProcessor;

// attach XSL stylesheet object

$xslp->importStyleSheet($xsl);

// perform transformation

echo $xslp->transformToXML($xml);

?>

Comments
XSL, the Extensible Style Language, is a powerful language that makes it possible to
apply presentation rules to XML documents, and convert—or transform—them from
one format to another. For example, you could use different XSL transformations to
create an HTML Web page, a WML deck, and an ASCII text file… all from the same
source XML.

An XSL Transformation essentially consists of converting an XML source tree
into a new—and usually completely different—result tree. This is accomplished
by means of an XSLT stylesheet, which contains one or more template rules. A
template rule performs two functions: It first identifies a pattern to match in the
source tree, and then describes the structure of the desired result tree. It is this
process of transforming the source tree into the result tree that gives XSLT its name.

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 2 9

The previous listing demonstrates how this works in PHP. Here, two instances
of the DOMDocument class are created, one for the XML data and the other for the
XSLT style sheet. Next, the XSLT engine is initialized by creating an object of the
XSLTProcessor class, and the object’s importStyleSheet() method is used to
import the XSLT style sheet. Once the style sheet has been successfully parsed, the
transformToXML() method is used to apply the style rules to the XML document,
“transform” it, and return the result.

10.12 Exporting Data to XML

Problem
You want to export an SQL result set as an XML file.

Solution
Turn the result set into an XML document with PHP’s DOM functions:

<?php

// open connection

$mysqli = new mysqli("localhost", "user", "pass", "db1");

if (mysqli_connect_errno()) {

 die("ERROR: Cannot connect. " . mysqli_connect_error());

}

// create and execute SELECT query

$sql = "SELECT id, name, price FROM products";

if ($result = $mysqli->query($sql)) {

 // if results exist

 // initialize DOM object

 $xml = new DOMDocument("1.0");

 // add root node

 $root = $xml->createElement("resultset");

 $xml->appendChild($root);

 // iterate over result set

 // print <record>s and <field>s

 if ($result->num_rows > 0) {

 while($row = $result->fetch_row()) {

 $record = $xml->createElement("record");

 4 3 0 P H P P r o g r a m m i n g S o l u t i o n s

 $root->appendChild($record);

 $fieldCount = 0;

 while ($fieldCount < $mysqli->field_count) {

 $field = $xml->createElement("field");

 $record->appendChild($field);

 $field->appendChild(↵
$xml->createTextNode($row[$fieldCount]));

 $fieldCount++;

 }

 }

 }

 $result->close();

} else {

 die("ERROR: " . $mysqli->error . " (query was $sql)");

}

// close connection

$mysqli->close();

// display XML result set as HTML...

$xml->formatOutput = true;

echo "<xmp>" . $xml->saveXML() . "</xmp>";

// ...or write it to a file as XML

$xml->save("results.xml") or die("ERROR: Could not write to file");

?>

Comments
There are a number of reasons why you might want to export a SQL result set to an
XML file: to make the data more usable and portable, to reduce your application’s
dependence on a database server, or to improve performance (because it’s usually
faster to read from a disk file than from a network connection).

The previous listing shows you how, by executing a SELECT query and then
converting the resulting data set into a series of <record> and <field> elements.
PHP’s DOM extension, which comes with built-in support for dynamically
adding nodes to an XML document tree, takes care of the heavy lifting with its
createElement(), createTextNode(), and appendChild() methods (these
methods are discussed in greater detail in the listings in “10.4: Creating XML” and
“10.5: Adding or Removing XML Nodes”). Once the document has been completely
generated, it may be written to a file via the save() method, or returned as a string
suitable for display with the saveXML() method.

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 3 1

You can also do the reverse: read data from an XML file and write it to a database.
The next listing demonstrates this, using SimpleXML to parse an XML file and
generate a series of SQL INSERT statements from it:

<?php

$xmlData =<<< END

<?xml version="1.0"?>

<data>

 <item>

 <id>20</id>

 <name>mangoes</name>

 <price>11</price>

 </item>

 <item>

 <id>22</id>

 <name>strawberries</name>

 <price>5</price>

 </item>

 <item>

 <id>23</id>

 <name>grapes</name>

 <price>25</price>

 </item>

</data>

END;

// read XML data string

$xml = simplexml_load_string($xmlData)↵
or die("ERROR: Cannot create SimpleXML object");

// open MySQL connection

$connection = mysqli_connect("localhost", "user", "pass", "db1")↵
or die ("ERROR: Cannot connect");

// process node data

// create and execute INSERT queries

foreach ($xml->item as $item) {

 $id = $item->id;

 $name = mysqli_real_escape_string($connection, $item->name);

 $price = $item->price;

 $sql = "INSERT INTO products (id, name, price)↵

 4 3 2 P H P P r o g r a m m i n g S o l u t i o n s

VALUES ('$id', '$name', '$price')";

 mysqli_query($connection, $sql) or die ("ERROR: " .↵
mysqli_error($connection) . " (query was $sql)");

}

// close connection

mysqli_close($connection);

?>

In this listing, SimpleXML is used to iterate over each <item> in the XML
document and generate an SQL INSERT statement from the values contained within
it. PHP’s ext/mysqli functions are then used to execute each INSERT statement on
the database server, thus writing the data to the database.

TIP

Metabase is a PHP-based database abstraction layer that uses XML to express table relationships,
structures and records. Read more about it at http://www.phpclasses.org/
metabase.

10.13 Working with RDF Site Summaries

Problem
You want to create or parse an RDF Site Summary (RSS) feed.

Solution
Create an RSS feed by importing data from an external data source (such as a database)
into an RSS template:

<?php

// send XML header

header("Content-Type: text/xml");

echo "<?xml version=\"1.0\" encoding=\"iso-8859-1\"?>";

?>

<rss version="2.0">

 <channel>

 <title>Trog</title>

 <link>http://www.melonfire.com/community/columns/trog/</link>

 <description>Tutorials on PHP and other languages</description>

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 3 3

<?php

// open connection

$connection = mysqli_connect("localhost", "user", "pass", "db1")↵
or die ("ERROR: Cannot connect");

// create and execute SELECT query

$sql = "SELECT url, title, synopsis FROM content LIMIT 10";

$result = mysqli_query($connection, $sql)↵
or die ("ERROR: " . mysqli_error($connection) . ↵
" (query was $sql)");

// check for returned rows

// print as <item>s if available

if (mysqli_num_rows($result) > 0) {

 while($row = mysqli_fetch_assoc($result)) {

?>

 <item>

 <title><?php echo htmlentities($row['title']); ?>↵
</title>

 <link><?php echo $row['url']; ?></link>

 <description>

 <?php echo htmlentities($row['synopsis']); ?>

 </description>

 </item>

<?php

 }

}

// close connection

mysqli_close($connection);

?>

 </channel>

</rss>

Parse an RSS feed by using SimpleXML to read the RSS stream and parse and
display the contents of each <item> element:

<html>

<head></head>

<body>

<?php

// a bare-bones RSS reader

 4 3 4 P H P P r o g r a m m i n g S o l u t i o n s

// read RSS data

$xml = simplexml_load_file("http://some.domain.com/data.rss")↵
or die("ERROR: Cannot create SimpleXML object");

// print channel information

echo "CHANNEL: " . $xml->channel->title . "
";

echo "DESCRIPTION: " . $xml->channel->description . "
";

echo "
";

// iterate over item list

// print first 200 characters of each item

// after stripping out embedded HTML elements

$count = 1;

foreach ($xml->channel->item as $item) {

 echo "($count) " . strtoupper($item->title) . "
";

 echo "URL: link . "'>" . $item->link . "

";

 echo substr(strip_tags($item->description), 0, 200) . "...
↵

";

 $count++;

}

?>

</pre>

</body>

</html>

Comments
RSS is an XML-based format originally devised by Netscape to distribute information
about the content on its My.Netscape.Com portal. RSS makes it possible to distribute
a frequently updated list of the latest information about a particular Web site, thus
opening the door to content syndication over the Web.

An RSS document follows all the rules of XML markup, and typically contains
a list of resources (URLs), marked up with descriptive metadata. A <channel>
block contains general information and encloses multiple <item> elements, each of
which describes a single resource in greater detail by providing a title, a URL, and
a description of that resource.

If you’re a content publisher looking to create an RSS document for your Web
site, and you have a database or other external data source to populate the feed, all
you need to do is build an RSS template and “plug in” data at appropriate spots. This
process is illustrated in the first listing, which reads resource information from
a MySQL database and plugs it into a template to dynamically create an RSS feed.

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 3 5

If, on the other hand, your task is to parse an RSS feed generated by someone else,
the second listing demonstrates the process: use SimpleXML to read the remote RSS
data and retrieve channel and resource information using standard object->property
notation. SimpleXML’s ability to loop over node collections further simplifies the task
of processing <item> elements and iteratively building an HTML (or other format)
document from them. If item information contains embedded HTML elements, you
may optionally choose to remove these with the strip_tags() method. Figure 10-1
illustrates what the output might look like.

10.14 Using the Google Web APIs

Problem
You want to perform a Google.com search.

Figure 10-1 A bare-bones RSS reader

 4 3 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PHP’s SOAP functions with the Google Web APIs to execute a search on
Google.com and process the results:

<html>

<head></head>

<body>

<?php

if (!isset($_POST['submit'])) {

?>

 <form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Search Google for: <input type="text" name="q">

 <input type="submit" name="submit" value="Search">

 </form>

<?php

} else {

 // initialize SOAP client

 $client = new SoapClient("http://api.google.com/GoogleSearch.wsdl");

 // set up input parameters to be

 // passed to the remote procedure

 $key = 'xxxxxx'; // insert your Google key here

 $q = $_POST['q']; // search term

 $start = 0; // start from result n

 $maxResults = 10; // show a total of n results

 $filter = false; // remove similar results

 $restrict = ''; // restrict by topic

 $safeSearch = false; // remove adult links

 $lr = ''; // restrict by language

 $ie = ''; // input encoding

 $oe = ''; // output encoding

 // try the code

 try {

 // invoke the method on the server

 $result = $client->doGoogleSearch($key, $q, $start,↵
$maxResults, $filter, $restrict, $safeSearch, $lr, $ie, $oe);

 // catch exceptions

 } catch (SoapFault $fault) {

 die("ERROR: " . $fault->faultstring);

 }

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 3 7

 // else print results

 echo "<h2>Search Results</h2>";

 echo $result->estimatedTotalResultsCount . " hits found in " .↵
$result->searchTime . " ms";

 echo "";

 if (is_array($result->resultElements)) {

 foreach ($result->resultElements as $r) {

 echo "URL . "\">" . $r->title . "";

 echo "
";

 echo $r->snippet . "(" . $r->cachedSize . ")";

 echo "<p></p>";

 }

 }

 echo "";

}

?>

</body>

</html>

Comments
The Google Web APIs enable developers to query the complete Google database
using a series of SOAP-based remote procedure calls. PHP 5 supports the SOAP,
making it possible to transparently execute SOAP-based remote procedure calls over
HTTP. These two facts make it easy to interface a PHP application with the Google.
com Web site.

This script actually contains two parts, separated by a conditional test. The first
part displays an HTML form into which the user can input one or more query terms.
Once the form is submitted, the second part initializes a SOAP client and passes it
the URL to Google.com’s Web Services Description Language (WSDL) file; once
this file is read, it becomes possible to access Google Web API methods as though
they were local methods of the SOAPClient object.

Given the task here is to perform a search for the user’s query term(s), the
doGoogleSearch() method is invoked next, and parameters such as the license
key, the query term, the number of matches to display, the language to search in, and
the character encoding of the result set are passed to it. The request is transmitted
to the SOAP server, and the result is converted into a native PHP object holding
a series of result elements, together with some statistics on the search itself. With this
information at hand, it becomes a simple matter to create an HTML page containing
a properly formatted list of matches. Errors, if any, are returned as SOAPFault
objects, and can easily be detected and processed by wrapping the method call in
a try-catch() block.

Figure 10-2 illustrates the result of a search for “tim berners-lee”.

 4 3 8 P H P P r o g r a m m i n g S o l u t i o n s

An alternative is to use the PEAR SOAP class, freely available from http://
pear.php.net/package/SOAP. This class provides a good replacement for PHP’s
native SOAP protocol support; this is illustrated by the next listing, which uses it to
create a script equivalent to the previous one:

<html>

<head></head>

<body>

<?php

if (!isset($_POST['submit'])) {

?>

 <form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Search Google for: <input type="text" name="q">

 <input type="submit" name="submit" value="Search">

 </form>

Figure 10-2 The results of a search conducted using the Google Web APIs

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 3 9

<?php

} else {

 // include SOAP class

 include "SOAP/Client.php";

 // initialize SOAP client

 $soapclient = new ↵
SOAP_Client("http://api.google.com/GoogleSearch.wsdl");

 // set up an array containing input parameters to be

 // passed to the remote procedure

 $params = array('key' => 'xxxxx', // insert your Google key

 here

 'q' => $_POST['q'], // search term

 'start' => 0, // start from result n

 'maxResults' => 10, // show a total of n

 results

 'filter' => false, // remove similar results

 'restrict' => '', // restrict by topic

 'safeSearch' => false, // remove adult links

 'lr' => '', // restrict by language

 'ie' => '', // input encoding

 'oe' => ''); // output encoding

 // invoke the method on the server

 $result = $soapclient->call("doGoogleSearch", $params,↵
array('namespace' => 'urn:GoogleSearch'));

 // check for an error

 if (get_class($result) == "soap_fault") {

 die("ERROR: " . $result->message);

 }

 // else print results

 echo "<h2>Search Results</h2>";

 echo $result->estimatedTotalResultsCount . " hits found in " .↵
$result->searchTime . " ms";

 echo "";

 if (is_array($result->resultElements)) {

 foreach ($result->resultElements as $r) {

 echo "URL . "\">" . $r->title . ↵
"";

 4 4 0 P H P P r o g r a m m i n g S o l u t i o n s

 echo "
";

 echo $r->snippet . "(" . $r->cachedSize . ")";

 echo "<p></p>";

 }

 }

 echo "";

}

?>

</body>

</html>

Here, an instance of the SOAP_Client class is created, and then the class’ call()
method is used to invoke the remote doGoogleSearch() method with an array
of parameters. The result is processed in the same manner as it is in the first listing
in this section. Errors, if any, are generated as soap_fault() objects, and can be
detected with a call to get_class().

NOTE

A Google license key must accompany each request made through the Google Web APIs, or else
the API call(s) will fail. Therefore, you need to obtain a license key and place it in the scripts
described in this listing before they will work as advertised.

10.15 Using the Amazon E-Commerce Service

Problem
You want to interface with the Amazon.com product catalog.

Solution
Use PHP’s SOAP functions with the Amazon E-Commerce Service (ECS) to
perform product searches on Amazon.com:

<html>

<head></head>

<body>

<?php

if (!isset($_POST['submit'])) {

?>

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 4 1

 <form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Search Amazon.com for ISBN: <input type="text" name="isbn">

 <input type="submit" name="submit" value="Search">

 </form>

<?php

} else {

 // initialize SOAP client

 $client = new ↵
SoapClient("http://webservices.amazon.com/AWSECommerceService/↵
AWSECommerceService.wsdl");

 // set operation parameters

 $params->{"ItemId"} = $_POST['isbn']; // ISBN number

 // generate request object

 $request->{"Request"} = $params;

 $request->{"SubscriptionId"} = "xxxxx"; // insert your ↵
ECS key here

 // try the code

 try {

 // invoke AWS method on server

 $result=$client->ItemLookup($request);

 // catch exceptions

 } catch (SoapFault $fault) {

 die("ERROR: " . $fault->faultstring);

 }

 // print results

 echo "<h2>Search Results</h2>";

 echo "ASIN: " . $result->Items->Item->ASIN . "
";

 echo "Title: " . $result->Items->Item->ItemAttributes->Title . ↵
"
";

 echo "Author: " . $result->Items->Item->ItemAttributes->Author .↵
"
";

 echo "Items->Item->DetailPageURL . "\">↵
Read more...";

}

?>

</body>

</html>

 4 4 2 P H P P r o g r a m m i n g S o l u t i o n s

Comments
The Amazon ECS enables developers to query the complete Amazon.com product
catalog using a series of SOAP-based remote procedure calls. PHP 5 supports SOAP,
making it possible to transparently execute SOAP-based remote procedure calls
over HTTP. This makes it easy to interface a PHP application with the Amazon.com
online store.

This script is made up of two sections: the first displays an HTML form that the
user can input an ISBN number into (an ISBN number is a unique number used to
reference a book), and the second initializes a SOAP client and passes it the URL
to Amazon.com’s WSDL file. Once this file is read, it becomes possible to access
Amazon ECS methods as though they were local methods of the SOAPClient object.

As an example, assume the task is to look up a book by its International Standard
Book Number (ISBN). A review of the ECS documentation suggests that the
ItemLookup() method is most appropriate for this task, as it accepts an ISBN
number and returns meta-information for the corresponding book. Thus, the previous
listing creates a request object and initializes it with the ECS subscription ID and
the ISBN to search. This request object is then transmitted to the SOAP server, and
the result is converted into a native PHP object holding a series of result elements.
It is now a simple matter to process the SOAP response and extract the book’s
title, author, and Amazon.com page URL from it. Errors, if any, are returned as
SOAPFault objects, and they can be detected and processed by wrapping the method
call in a try-catch() block.

TIP

To see this script in action, try it with the number 1592640079—the ISBN number for Oliver Twist
by Charles Dickens.

Users of PHP versions without SOAP support may instead prefer to use the PEAR
SOAP class, freely available from http://pear.php.net/package/SOAP. This
class provides a good replacement for PHP’s native SOAP protocol support; this
is illustrated by the next listing, which uses it to create a script equivalent to the
previous one:

<html>

<head></head>

<body>

<?php

if (!isset($_POST['submit'])) {

?>

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 4 3

 <form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Search Amazon.com for ISBN: <input type="text" name="isbn">

 <input type="submit" name="submit" value="Search">

 </form>

<?php

} else {

 // include SOAP class

 include "SOAP/Client.php";

 // initialize SOAP client (non-WSDL)

 $soapclient = new SOAP_Client("http://webservices.amazon.com/onca/↵
soap? Service=AWSECommerceService");

 // set up an array of input parameters

 // passed to the remote procedure

 $params = array('Service' => 'AWSECommerceService', // service

 'SubscriptionId' => 'xxxx', // insert your ↵
ECS key here

 'ItemId' => $_POST['isbn']); // ISBN number

 // invoke the method on the server

 $result = $soapclient->call("ItemLookup", $params);

 // check for an error

 if (get_class($result) == "soap_fault") {

 die("ERROR: " . $result->message);

 }

 // else print results

 echo "<h2>Search Results</h2>";

 echo "ASIN: " . $result['Items']->Item->ASIN . "
";

 echo "Title: " . $result['Items']->Item->ItemAttributes->Title .↵
"
";

 echo "Author: " . $result['Items']->Item->ItemAttributes->Author .↵
"
";

 echo "Item->DetailPageURL . "\">↵
Read more...";

}

?>

</body>

</html>

 4 4 4 P H P P r o g r a m m i n g S o l u t i o n s

Here, an instance of the SOAP_Client class is created, and then the class’ call()
method is used to invoke the remote ItemLookup() method with an array of
parameters. The result is processed in the same manner as in the first listing in this
section. Errors, if any, are generated as soap_fault() objects, and can be detected
with a call to get_class().

NOTE

An ECS subscription key must accompany each request made through the ECS service, or else
the request will fail. Therefore, you need to obtain a subscription key and place it in the scripts
described in this listing before they will work as advertised. You can obtain such a key free of
charge from http://www.amazon.com/webservices.

TIP

In addition to performing item lookups, ECS also lets you search Amazon.com for keywords,
titles, wish lists, zShops, and Amazon Marketplace sellers; create and remotely manipulate
Amazon.com shopping carts; browse categories; sort results by different criteria; and refine
the level of search detail. Additionally, you may also use the techniques and script template
used in this listing to access newer Amazon.com services, such as the Simple Queue Service
(SQS), Elastic Compute Cloud (EC2) and Mechanical Turk. Look in the online documentation
at http://www.amazon.com/webservices for more details.

10.16 Creating Trackbacks

Problem
You want to manually set a trackback to a blog post, or a Web page that accepts
trackbacks.

Solution
Use PEAR’s Services_Trackback class:

<?php

$trackbackData = array(

 'id' => 1,

 'title' => 'What I Think Of What They Said (testing, PL IGNORE)',

 'excerpt' => 'Here, I refer to the post at originating.blog,↵

 C h a p t e r 1 0 : W o r k i n g w i t h X M L 4 4 5

which I thought made some powerful statements.',

 'url' => 'http://my.blog/url/to/my/post',

 'blog_name' => 'My Blog',

 'trackback_url' => 'http://originating.blog/url/to/↵
trackback?postID=19',);

// include class

include "Services/Trackback.php";

// initialize new instance

$trackback = new Services_Trackback();

// set object properties

foreach ($trackbackData as $k => $v) {

 $trackback->set($k, $v);

}

// send trackback

$ret = $trackback->send();

if (PEAR::isError($ret)) {

 echo "Trackback failed: " . $ret->getMessage();

} else {

 echo "Trackback successful";

}

?>

Comments
Trackbacks provide an easy way for content authors to notify each other when they
refer to each other’s published material on their blogs or Web pages. A trackback
is an XML-formatted message, used to create a link between the original content
source and its referrer. Once a trackback has been posted, it usually becomes visible
on the original content source, thereby facilitating discussion among readers. Most
modern blogging applications support the trackback protocol; this listing provides
a solution for those that don’t.

PEAR’s Services_Trackback class, available from http://pear.php.net/
package/Services_Trackback, provides routines to create and format a
trackback message in XML, and send it to a target URL. As the previous listing
illustrates, this message has various components: a title and excerpt for the trackback
message, the URL and name of the referring blog or page, and the URL to which the

 4 4 6 P H P P r o g r a m m i n g S o l u t i o n s

trackback must be posted at the original source of the content. These components
are stored in a PHP associative array and passed to an instance of the Services_
Trackback class via the set() method, which takes care of formatting them into
XML. The instance’s send() method is then used to actually post the trackback to
the destination URL.

TIP

Read more about trackbacks at http://en.wikipedia.org/wiki/
Trackback, and about the trackback protocol at http://www.sixapart.com/
pronet/docs/trackback_spec.

447

CHAPTER

11
Working with Different

 File Formats and
Network Protocols

IN THIS CHAPTER:
 11.1 Pinging Remote Hosts
 11.2 Tracing Network Routes
 11.3 Performing WHOIS Queries
 11.4 Performing DNS Queries
 11.5 Mapping Names to IP Addresses
 11.6 Performing IP-Based Geographic Lookups
 11.7 Transferring Files over FTP
 11.8 Accessing POP3 Mailboxes
 11.9 Generating And Sending E-mail
11.10 Generating and Sending MIME E-mail

11.11 Generating and Sending E-mail
with Attachments

11.12 Parsing Comma-Separated Files
11.13 Converting Between ASCII File Formats
11.14 Creating PDF Files
11.15 Creating ZIP Archives
11.16 Creating TAR Archives
11.17 Resizing Images
11.18 Working with Image Metadata
11.19 Monitoring Web Pages

 4 4 8 P H P P r o g r a m m i n g S o l u t i o n s

PHP comes with innumerable extensions, all designed to let developers
interface the language with as many servers, protocols and formats as
possible. This all-embracing approach is one of the reasons for PHP’s

primacy as a Web scripting language—it’s hard to think of a single format or
protocol that you can’t hook a PHP script up to!

This chapter is the proof of the pudding: It includes recipes for connecting to
File Transfer Protocol (FTP) servers; reading mail in Post Office Protocol 3 (POP3)
mailboxes; querying Domain Name System (DNS) and WHOIS servers; extracting
thumbnails from digital Joint Photographic Experts Group (JPEG) files; dynamically
generating Portable Document Format (PDF) files; creating Multipurpose Internet
Mail Extensions (MIME) -compliant e-mail messages; and many more. Enter, and
prepare to be amazed!

11.1 Pinging Remote Hosts

Problem
You want to check if a particular network host is “alive.”

Solution
Use the system’s ping command:

<?php

// ping remote host

exec("/bin/ping -c 5 host.name", $output);

echo "<pre>" . join("\r\n", $output) . "</pre>";

?>

Comments
The ping command, which sends the target host a data packet and checks for a
response, is the quickest way to find out if a network host is functional. The previous
listing directly calls the system-specific ping command with exec() to check
a host’s status.

NOTE

Remember to alter the path to the ping binary so that it is correct for your system.

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 4 9

For OS-independent code, you might prefer to use PEAR’s Net_Ping class, freely
available from http://pear.php.net/package/Net_Ping. This class chooses
the appropriate ping command for the operating system and executes it with the
target host as parameter. A result object is created from the response; this object can
be used to access individual elements of the response, such as the response time or
latency, or to view the raw output of the command with the getRawData() method.
Here’s an example of it in action:

<?php

// include class

include "Net/Ping.php";

// create object

$ping = Net_Ping::factory();

// ping remote host

// print results

$response = $ping->ping("host.name");

echo "<pre>" . join("\r\n", $response->getRawData()) . "</pre>";

?>

11.2 Tracing Network Routes

Problem
You want to trace the route between the current host and a remote host.

Solution
Use the system’s traceroute command:

<?php

// ping remote host

exec("/usr/bin/traceroute host.name", $output);

echo "<pre>" . join("\r\n", $output) . "</pre>";

?>

Comments
The traceroute (sometimes called tracert on Windows systems) command
displays the path a data packet must take in order to arrive at a named remote host.

 4 5 0 P H P P r o g r a m m i n g S o l u t i o n s

This command is a good way to measure the Internet distance between two hosts, as
well as the time taken to cross that distance. The previous listing directly calls the
system’s traceroute command with exec() to obtain this distance. Remember to
alter the path to the traceroute binary so that it is correct for your system.

For OS-independent code, you might prefer to use PEAR’s Net_Traceroute class,
freely available from http://pear.php.net/package/Net_Traceroute.
This class searches the disk for the traceroute program for the operating system
and executes it with the target host as parameter. A result object is created from the
response; this object can be used to access individual elements of the response, or
to view the raw output of the command with the getRawData() method. Here’s an
example of it in action:

<?php

// include class

include "Net/Traceroute.php";

// create object

$trace = Net_Traceroute::factory();

// trace route to remote host

// print results

$response = $trace->traceroute("host.name");

echo "<pre>" . join("\r\n", $response->getRawData()) . "</pre>";

?>

11.3 Performing WHOIS Queries

Problem
You want to retrieve ownership information for a domain.

Solution
Use PEAR’s Net_Whois class:

<?php

// include class

include "Net/Whois.php";

// create object

$whois = new Net_Whois();

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 5 1

// perform WHOIS query

// print results

$response = $whois->query("host.name");

echo "<pre>" . $response . "</pre>";

?>

Comments
A WHOIS query returns ownership and administrative information for a particular
domain. To perform such a query with PHP, use the PEAR Net_Whois class, freely
available from http://pear.php.net/package/Net_Whois. This class first
obtains the registrar of record for the named domain, and then queries that registrar
to obtain detailed information on the billing, administrative, and technical contact for
that domain.

11.4 Performing DNS Queries

Problem
You want to query the DNS for a domain record.

Solution
Use PEAR’s Net_DNS class:

<?php

// include class

include "Net/DNS.php";

// create object

$dns = new Net_DNS_Resolver();

// get IP for host

// print results

$host = "host.name";

$response = $dns->search($host, "MX");

print_r($response);

?>

 4 5 2 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PEAR’s Net_DNS class, freely available from http://pear.php.net/package/
Net_DNS, is your one-stop Solution for any DNS query operation. The class
provides a search() method, which accepts a host name or IP address, together
with optional type and class identifiers. It then queries the DNS and returns matching
DNS records as a series of objects containing the required information. The previous
listing illustrates the process of querying the DNS to find the mail exchanger (MX)
for a domain.

TIP

By default, Net_DNS uses the default nameserver for queries. You can alter this by specifying one
or more nameservers (as an array) in the object constructor.

NOTE

PHP has some built-in functions for DNS queries: dns_get_record(), dns_get_
mx(), dns_check_record(), getmxrr(), and checkdnsrr(). However,
these functions are not implemented on the Windows platform and so it’s worthwhile to check the
PHP manual for compatibility before using them in your code.

11.5 Mapping Names to IP Addresses

Problem
You want to find the IP address corresponding to a host name, or vice versa.

Solution
Use PHP’s gethostbyname() and gethostbyaddr() functions:

<?php

// get IP for host

$host = "host.name";

echo "$host = " . gethostbyname($host) . "\n";

// get host name for IP

$ip = "127.0.0.1";

echo "$ip = " . gethostbyaddr($ip) . "\n";

?>

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 5 3

Comments
PHP’s gethostbyname() function accepts a domain name and returns the IP
address corresponding to that name; the gethostbyaddr() function accepts an IP
address and returns the corresponding domain name.

An alternative is to use PEAR’s Net_DNS class, freely available from http://
pear.php.net/package/Net_DNS. You can use the class’ search() method to
perform name-to-IP-address translation by querying for an A record, as illustrated here:

<?php

// include class

include "Net/DNS.php";

// create object

$dns = new Net_DNS_Resolver();

// get IP for host

// print results

$host = "host.name";

$response = $dns->search($host, "A");

echo "$host = " . $response->answer[0]->address . "\n";

// get host name for IP

$ip = "127.0.0.1";

$response = $dns->search($host, "A");

echo "$ip = " . $response->answer[0]->name . "\n";

?>

11.6 Performing IP-Based Geographic Lookups

Problem
You want to identify a user’s current geographic location.

Solution
Use PEAR’s Net_GeoIP class in combination with the MaxMind country database to
map the user’s IP address to a country name:

<?php

// include class

include "Net/GeoIP.php";

 4 5 4 P H P P r o g r a m m i n g S o l u t i o n s

// create object

// set path to country database

$geoip = Net_GeoIP::getInstance("GeoIP.dat");

// print results

echo "IP address: " . getenv('REMOTE_ADDR') . "\n";

echo "Country: " . $geoip->lookupCountryName(getenv('REMOTE_ADDR')) . ↵
"\n";

// print MaxMind compulsory license notice

echo "This product includes GeoIP data created by MaxMind, available ↵
from http://maxmind.com/";

?>

Comments
To find out which country and city a user is physically located in, it is necessary to
obtain the user’s IP address and map it to a country. IP address blocks are assigned
to countries by the Internet Assigned Numbers Authority (IANA). So, by identifying
the block from which an IP address has been assigned, it’s usually possible to
identify the user’s location.

A number of organizations offer IP-to-country mapping databases for this purpose.
MaxMind (http://www.maxmind.com/) and NetGeo (http://www.caida
.org/tools/utilities/netgeo/) are two popular options. The previous listing
uses the free MaxMind country database, with PEAR’s Net_GeoIP class (http://
pear.php.net/package/Net_GeoIP) providing an interface to this database via
its lookupCountryName() and lookupCountryCode() methods.

NOTE

In order to use the Net_GeoIP class, you must first download the MaxMind country database from
http://www.maxmind.com/.

A common application of IP-based geo-location is to serve targeted advertising
to Web site visitors. In this case, the client’s IP address is used to identify its current
location, and an advertisement relevant to that location is displayed. Here’s an
example of how this might be done:

<html>

<head></head>

<body>

<center>

<?php

// include class

include "Net/GeoIP.php";

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 5 5

// create object

// set path to country database

$geoip = Net_GeoIP::getInstance("GeoIP.dat");

// get country code

$code = $geoip->lookupCountryCode(getenv('REMOTE_ADDR'));

// retrieve and display image advertisement

// corresponding to country code

echo "\n";

// print MaxMind compulsory license notice

echo "This product includes GeoIP data created by MaxMind,

available from http://maxmind.com/";↵
?>

</center>

</body>

</html>

An alternative to the MaxMind GeoIP database is PEAR’s Net_Geo class, freely
available from http://pear.php.net/package/Net_Geo. This class also maps
IP addresses to geographic locations and, unlike the MaxMind product, its database
provides both city and country information free of charge. The flip side of this:
The Net_Geo database is not actively maintained and so is more likely to produce
inaccurate results.

Here’s an example demonstrating its usage:

<?php

// include class

include "Net/Geo.php";

// get location data for requesting

// client IP address

$geo = new Net_Geo();

$data = $geo->getRecord(getenv('REMOTE_ADDR'));

// print results

echo "IP address: " . $data['TARGET'] . "\n";

echo "Owner: " . $data['NAME'] . "\n";

echo "City: " . $data['CITY'] . "\n";

echo "State: " . $data['STATE'] . "\n";

echo "Country: " . $data['COUNTRY'] . " [" . $data['LAT'] .↵
" lat./" . $data['LONG'] . " long.]\n";

?>

 4 5 6 P H P P r o g r a m m i n g S o l u t i o n s

11.7 Transferring Files over FTP

Problem
You want to upload or download a file over FTP.

Solution
Use PHP’s FTP extension:

<?php

// set access parameters

$host = "ftp.some.domain.dom";

$user = "joe";

$pass = "secret";

$dir = "/pub";

// open connection to FTP server

$conn = ftp_connect($host) or die ("ERROR: Cannot connect");

// log in

ftp_login($conn, $user, $pass) or die ("ERROR: Cannot log in");

// get file listing

$list = ftp_nlist($conn, ".") or die("ERROR: Cannot list files");

foreach ($list as $file) {

 echo "$file\n";

}

// download a file

$remote = "code.zip";

$local = "code_020605.zip";

ftp_get($conn, $local, $remote, FTP_BINARY)↵
or die ("ERROR: Cannot download file: $remote");

echo "File [$remote] successfully downloaded as [$local]\n";

// upload a file

$local = "photo556.jpg";

$remote = "photo556.jpg";

ftp_put($conn, $remote, $local, FTP_BINARY)↵
or die ("ERROR: Cannot upload file: $local");

echo "File [$local] successfully uploaded as [$remote]\n";

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 5 7

// delete a file

$remote = "addresses.tmp";

ftp_delete($conn, $remote) or die ("ERROR: Cannot delete file: $remote");

echo "File [$remote] successfully deleted\n";

// disconnect

ftp_close($conn);

?>

Comments
PHP comes with built-in support for the FTP file transfer protocol, making it easy
to interface with FTP servers for file transfers. The previous listing illustrates the
process. First, a connection to the FTP server is initialized with a call to ftp_
connect(); this function returns a connection handle that is used in all subsequent
calls. The ftp_login() function is then used to log in to the server, while the
ftp_close() function is used to terminate the connection and end the session.

Between the calls to ftp_connect() and ftp_disconnect(), it is possible
to perform all the actions commonly associated with an FTP session. The previous
listing illustrates four of the most common: listing files using ftp_nlist();
uploading files with ftp_put(); downloading files with ftp_get(); and deleting
files with ftp_delete(). Note that ftp_put() and ftp_get() must be supplied
with the remote and local file name, together with the transfer type (binary or
ASCII).

11.8 Accessing POP3 Mailboxes

Problem
You want to read and retrieve messages from a POP3-compliant mailbox.

Solution
Use PEAR’s Net_POP3 class to connect to and interact with the POP3-compliant
mail server:

<?php

// include class

include "Net/POP3.php";

 4 5 8 P H P P r o g r a m m i n g S o l u t i o n s

// set mailbox access parameters

$host = "mail.server.com";

$user = "john";

$pass = "secret";

$port = "110";

// create object

$pop3 =& new Net_POP3();

// connect to host

if(PEAR::isError($ret = $pop3->connect($host, $port))){

 die("ERROR: " . $ret->getMessage());

}

// log in

if(PEAR::isError($ret = $pop3->login($user, $pass, 'USER'))){

 die("ERROR: " . $ret->getMessage());

}

// get number of messages and mailbox size

echo $pop3->numMsg() . " messages in mailbox, " .↵
$pop3->getSize() . " bytes\n\n";

// get message listing

// print message headers and first 300 characters of body

for ($x=1; $x<=$pop3->numMsg(); $x++) {

 $msgData = $pop3->getParsedHeaders($x);

 $msgBody = $pop3->getBody($x);

 echo "To: " . $msgData['To'] . "\n";

 echo "From: " . $msgData['From'] . "\n";

 echo "Subject: " . $msgData['Subject'] . "\n";

 echo "Date: " . $msgData['Date'] . "\n";

 echo "\n" . substr($msgBody, 0, 300) . "...\n";

 echo " -- END OF MESSAGE --";

 echo "\n\n";

}

// delete message #1

$pop3->deleteMsg(1);

// disconnect

$pop3->disconnect();

?>

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 5 9

Comments
PEAR’s Net_POP3 class, freely available from http://pear.php.net/
package/Net_POP3, is designed specifically to interact with, and read messages
from, POP3 servers. In this illustrative listing, the ball starts rolling with a call to
the connect() method; this method is passed the POP3 server name and port as
arguments. Next, an attempt is made to access the contents of the user’s mailbox,
using the supplied credentials as input to the login() method. If successful,
a number of utility methods become available to interact with the mailbox. The
session can be terminated at any point with a call to the disconnect() method.

The utility functions available include: the numMsg() method, which returns
the number of messages in the mailbox; the getSize() method, which returns the
mailbox size in bytes; the getParsedHeaders() method, which returns an array
of message headers; the getBody() method, which returns the message body; the
getMsg() method, which retrieves the entire message (both header and body); and
the deleteMsg() method, which deletes an individual message.

11.9 Generating and Sending E-mail

Problem
You want to generate and send an e-mail message.

Solution
Use PHP’s mail() function:

<?php

// set message headers and body

$to = "Joe Doe <joe.doe@some.domain.com>";

$from = "Paul Froe <paul@dummy>";

$subject = "Happy Birthday!";

$body =<<< END

Hey Joe,

Just wanted to wish you a happy 30th! Have a good one!

Paul

END;

 4 6 0 P H P P r o g r a m m i n g S o l u t i o n s

// send mail

if (mail($to, $subject, $body, "From: $from")) {

 echo "Message successfully delivered to mail agent";

} else {

 echo "Message could not be delivered to mail agent";

}

?>

Comments
PHP’s mail() function is the simplest way to send e-mail messages from PHP. The
function accepts four arguments: the recipient e-mail address, the message subject,
the message body, and a series of optional headers separated by the \r\n sequence
(among the optional headers, the From: header is mandatory). The mail() function
then hands the message to the local mail agent or the specified SMTP server (see
the Note about the Windows implementation of mail() in this section for more
information on this topic) for delivery. The previous listing illustrates this process.

The return value of mail() merely indicates whether or not the message was
delivered to the local mail agent/specified SMTP server. It offers no indication of
whether or not the message has reached the intended recipient.

You can send the same message to multiple recipients by using a comma-
separated recipient list, as illustrated here:

<?php

// set message headers and body

$to = "sarab.b@host.domain, joe.doe@other.domain";

$from = "Paul Froe <paul@dummy>";

$subject = "Happy Birthday!";

$body =<<< END

Hello all,

Just wanted to wish you a happy 30th! Have a good one!

Paul

END;

// send mail

if (mail($to, $subject, $body, "From: $from")) {

 echo "Message successfully delivered to mail agent";

} else {

 echo "Message could not be delivered to mail agent";

}

?>

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 6 1

NOTE

In case you thought you could use mail() to send bulk e-mail by iterating over an address
list in a loop, think again: because mail() opens a separate socket connection each time it is
invoked, it is inefficient and not at all suited for bulk mail transmission.

NOTE

Windows and *NIX implementations of PHP differ in the way their mail() function works. In
*NIX implementations, mail() delivers the message to the local mail agent while in Windows
implementations, mail() sends the message via the SMTP server specified in the php.ini file.
Also, in Windows implementations, because message headers are parsed by PHP and not the mail
agent, the headers must be kept as simple as possible to avoid parsing errors. For example, the
PHP manual recommends against the use of To: and From: headers in the form "User
Name <address@domain.com>", as such headers are likely to cause errors.
 For a detailed description of these and other issues, visit the PHP manual at http://www
.php.net/mail.

11.10 Generating and Sending MIME E-mail

Problem
You want to generate and send a multipart MIME e-mail message, such as one
containing both plain text and inline HTML.

Solution
Use PEAR’s Mail_Mime class:

<?php

// include class

include("Mail.php");

include("Mail/mime.php");

// set message parameters

$to = "Joe Doe <joe.doe@some.domain.com>";

$from = "Paul Froe <paul@dummy>";

$subject = "Warning message";

$text = "Danger! System unstable";

$html = "<html><head></head><body><h2>Danger!</h2>↵
System unstable!</body></html>";

 4 6 2 P H P P r o g r a m m i n g S o l u t i o n s

// create MIME object

// add parts to it

$mime = new Mail_mime();

$mime->setTXTBody($text);

$mime->setHTMLBody($html);

// get composite MIME message body

// send it

$body = $mime->get();

$hdrs = $mime->headers(array('From' => $from, 'Subject' => $subject));

$mail = &Mail::factory('mail');

if (!is_a($mail, 'PEAR_Error')) {

 if ($mail->send($to, $hdrs, $body)) {

 echo "Message successfully delivered to mail agent";

 } else {

 echo "Message could not be delivered to mail agent";

 }

} else {

 die("ERROR: Could not create mail object");

}

?>

Comments
The simplest way to generate multipart mail messages is with PEAR’s Mail_Mime
class, freely available from http://pear.php.net/package/Mail_Mime. The
previous listing illustrates the process by solving the common problem of building
an e-mail message containing both plain text and inline HTML code.

Here, a Mail_Mime() message object is created with two parts: a plain-text
component and an inline HTML component, attached with the setTXTBody() and
setHTMLBody() methods, respectively. As per the MIME specification, these two
parts are then concatenated into a single message (separated by appropriate boundary
lines). The composite message body is retrieved with the get() method, and the
corresponding headers are retrieved with the headers() method. The message
is then transmitted using PEAR’s Mail class (required, and freely available from
http://pear.php.net/package/Mail).

If you’d like to add inline images to the message body, it’s fairly easy to do that
as well—simply reference the images in your HTML body, and then add them to the
message as attachments with the addHTMLImage() method. Here’s how:

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 6 3

<?php

// include class

include("Mail.php");

include("Mail/mime.php");

// set message parameters

$to = "Joe Doe <joe.doe@some.domain.com>";

$from = "Paul Froe <paul@dummy>";

$subject = "Warning message";

$text = "Danger! System unstable";

$html = "<html><head></head><body><h2>Danger!</h2>↵
System unstable!<p align='center'>↵
</p></body></html>";

$file = "skull.jpg";

// create MIME object

// add parts to it

$mime = new Mail_mime();

$mime->setTXTBody($text);

$mime->setHTMLBody($html);

$mime->addHTMLImage($file);

// get composite MIME message body

// send it

$body = $mime->get();

$hdrs = $mime->headers(array('From' => $from, 'Subject' => $subject));

$mail = &Mail::factory('mail');

if (!is_a($mail, 'PEAR_Error')) {

 if ($mail->send($to, $hdrs, $body)) {

 echo "Message successfully delivered to mail agent";

 } else {

 echo "Message could not be delivered to mail agent";

 }

} else {

 die("ERROR: Could not create mail object");

}

?>

 4 6 4 P H P P r o g r a m m i n g S o l u t i o n s

11.11 Generating and Sending E-mail
with Attachments
Problem
You want to generate and send an e-mail message with one or more file attachments.

Solution
Use PEAR’s Mail_Mime class:

<?php

// include classes

include("Mail.php");

include("Mail/mime.php");

// set message parameters

$to = "Joe Doe <joe.doe@some.domain.com>";

$from = "Paul Froe <paul@dummy>";

$subject = "Knock knock";

$text = "Hey, here's that file you wanted.";

$file = "knock.zip";

// create MIME object

// add parts to it

$mime = new Mail_mime();

$mime->setTXTBody($text);

$mime->addAttachment($file);

// get composite MIME message body/headers

// send it

$body = $mime->get();

$hdrs = $mime->headers(array('From' => $from, 'Subject' => $subject));

$mail = &Mail::factory('mail');

if (!is_a($mail, 'PEAR_Error')) {

 if ($mail->send($to, $hdrs, $body)) {

 echo "Message successfully delivered to mail agent";

 } else {

 echo "Message could not be delivered to mail agent";

 }

} else {

 die("ERROR: Could not create mail object");

}

?>

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 6 5

Comments
When you’re generating multipart messages, it’s a good idea to use PEAR’s Mail_
Mime class, freely available from http://pear.php.net/package/Mail_
Mime. This class significantly simplifies the creation of complex messages, including
messages containing one or more attachments.

The previous listing illustrates the process. First, a Mail_Mime() message object
is created, and the plain-text body is added to it with the setTXTBody() method.
Next, a file is attached with the addAttachment() method; you can call this method
again to add more files. The composite MIME message body and headers are then
generated with calls to the get() and headers() methods, and PEAR’s Mail class
(required, and freely available from http://pear.php.net/package/Mail) is
then used to transmit the composite message to the mail agent or SMTP host.

11.12 Parsing Comma-Separated Files

Problem
You want to extract the individual elements of a file containing comma-separated
data.

Solution
Use PHP’s fgetcsv() function:

<?php

// set CSV file

$file = "data.csv";

// open file

$fp = fopen($file, "rb") or die("Cannot open file");

// iterate through file

// retrieve and print each field

while (!feof($fp)) {

 $line = fgetcsv($fp, 1024, ',', '"');

 echo "Author: " . $line[1] . " " . $line[0] . "\n";

 echo "Title: " . $line[2] . "\n";

 echo "Price: $" . $line[3]. "\n\n";

}

 4 6 6 P H P P r o g r a m m i n g S o l u t i o n s

// close file

fclose($fp) or die("Cannot close file");

?>

Comments
Just as the fgets() function returns a single line from a file, so too does PHP’s
fgetcsv() function parse and return a single record from a comma-separated
(CSV) file. The fgetcsv() function accepts three arguments: the file pointer, the
amount of data to read, and (optionally) the field delimiter and enclosure. Using
this information, it reads and parses a line from the file, storing the fields as array
elements. Placed in a loop, this process continues until all the records in the file have
been read.

The previous listing assumes a data file containing multiple records (rows), each
with four fields (columns), separated by commas and enclosed in double quotes, like
this:

"King","Stephen","Insomnia","7.99"

"Lehane","Dennis","Darkness, Take My Hand","6.99"

"Patterson", "Richard North", "Conviction", "14.99"

"Parker", "Robert B.", "Cold Service", "16.99"

After parsing the file with fgetcsv(), the result looks like this:

Author: Stephen King

Title: Insomnia

Price: $7.99

Author: Dennis Lehane

Title: Darkness, Take My Hand

Price: $6.99

Author: Richard North Patterson

Title: Conviction

Price: $14.99

Author: Robert B. Parker

Title: Cold Service

Price: $16.99

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 6 7

11.13 Converting Between ASCII File Formats

Problem
You want to convert an ASCII file for use on a UNIX, MS-DOS, or Macintosh
system.

Solution
Write a function to alter the file’s line ending character, thereby making it readable
on the target platform:

<?php

// function to convert file type

// by altering the line endings

function convertFile($file, $from, $to) {

 // define line endings for each platform

 $ends = array("UNIX" => "\n", "MSDOS" => "\r\n", "MAC" => "\r");

 // check to avoid unknown formats

 if (!array_key_exists($from, $ends) || !array_key_exists($to,↵
$ends)) {

 die ("Cannot recognize file format");

 }

 // read file contents into string

 $str = file_get_contents($file) or die ("Cannot read from file");

 // alter line endings

 $str = preg_replace("/" . $ends[$from] . "/", $ends[$to], $str);

 // rewrite contents to file

 file_put_contents($file, $str) or die("Cannot write to file");

}

// convert file from UNIX to MS-DOS format

convertFile("data.asc", "UNIX", "MSDOS");

?>

 4 6 8 P H P P r o g r a m m i n g S o l u t i o n s

Comments
You’ve probably noticed that text files created on UNIX appear on a single line
when viewed in Windows-only text editors. This problem arises because UNIX and
Windows use a different sequence of characters to mark the end of a line—UNIX
uses the \n character, while Windows uses the \r\n sequence. Macintosh systems
add another dimension to the puzzle—they use \r as the line ending character.

To solve the problem, all that’s really needed is to alter the line ending character
so that it is compatible with the target platform. That’s what the convertFile()
function in the previous listing does—it reads the named file into a string with the
file_get_contents() function, uses preg_replace() to find and replace all
occurrences of the current line ending character with a more suitable one, and writes
the result back to the file with the file_put_contents() function. The original
and desired file formats are passed to the function by means of the $from and $to
input arguments.

11.14 Creating PDF Files

Problem
You want to dynamically generate a PDF file.

Solution
Use PHP’s PDF extension:

<?php

// create PDF document object

$pdf = pdf_new();

// open PDF file

pdf_open_file($pdf, "screenplay.pdf");

// begin page

pdf_begin_page($pdf, 595, 842);

// get and use a font

$courier = pdf_load_font($pdf, "Courier", "host", "");

pdf_setfont($pdf, $courier, 10);

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 6 9

// write text

pdf_show_xy($pdf, "No one can tell you what the Matrix is, Neo.", ↵
50, 750);

pdf_show_xy($pdf, "You must see it for yourself.", 50, 730);

// add an image

$image = pdf_load_image($pdf, "jpeg", "matrix.jpg", "");

pdf_place_image($pdf, $image, 50, 650, 0.25);

// end page

pdf_end_page($pdf);

// close and save file

pdf_close($pdf);

?>

Comments
PHP’s PDF extension makes it possible to dynamically generate PDF files on the
fly. The previous listing illustrates the process, beginning by creating a PDF object
with a call to pdf_new(). Once an object has been initialized, a file name is set
with pdf_open_file(), and a new document page is generated with pdf_begin_
page(). A font object is selected and prepared for use with pdf_findfont() and
pdf_setfont(); an image is retrieved from a disk location and written to the page
with pdf_open_image_file() and pdf_place_image(); and a text string is
written to a particular (x, y) page coordinate with pdf_show_xy(). The pdf_end_
page() function marks the end of the page, while the pdf_close() function saves
the file to disk and destroys the PDF object.

It’s also possible to dynamically generate the PDF file and have it appear in the
user’s browser, assuming a correctly configured PDF reader on the client. In this
variant, pdf_open_file() is called with a null file name, and the PDF buffer is
dumped to the client via a call to pdf_get_buffer(), with appropriate headers to
trigger the client’s PDF reader. The following listing illustrates this:

<?php

// create PDF document object

$pdf = pdf_new();

// open PDF file

pdf_open_file($pdf, "");

// begin page

pdf_begin_page($pdf, 595, 842);

 4 7 0 P H P P r o g r a m m i n g S o l u t i o n s

// get and use a font

$courier = pdf_load_font($pdf, "Courier", "host", "");

pdf_setfont($pdf, $courier, 10);

// write text

pdf_show_xy($pdf, "No one can tell you what the Matrix is, Neo.", ↵
50, 750);

pdf_show_xy($pdf, "You must see it for yourself.", 50, 730);

// add an image

$image = pdf_load_image($pdf, "jpeg", "matrix.jpg", "");

pdf_place_image($pdf, $image, 50, 650, 0.25);

// end page

pdf_end_page($pdf);

// close and save file

pdf_close($pdf);

// get PDF buffer

$buffer = pdf_get_buffer($pdf);

// output to browser

header("Content-type: application/pdf");

header("Content-Length: " . strlen($buffer));

header("Content-Disposition: inline; filename=screenplay.pdf");

print $buffer;

?>

NOTE

In order for this listing to work, PHP must be compiled with support for ext/pdf (you can
obtain instructions from the PHP manual at http://www.php.net/pdf).

TIP

On Windows, you must use absolute paths in order for the listings in this section to work correctly.

11.15 Creating ZIP Archives

Problem
You want to dynamically create a ZIP archive.

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 7 1

Solution
Use PHP’s ext/zip extension:

<?php

// create object

$zip = new ZipArchive();

// open output file for writing

if ($zip->open("/tmp/www.zip", ZIPARCHIVE::CREATE) !== TRUE) {

 die ("Could not create archive");

}

// add all .php files in directory to archive

foreach (glob ('*.php') as $f) {

 $zip->addFile(realpath($f)) or die ("Could not add file: $f");

}

// close and save archive

$zip->close();

echo "Archive created successfully.";

?>

Comments
PHP 5.1 and later includes ext/zip, an extension that supports reading and writing
compressed ZIP archives using native PHP function calls. The previous listing
illustrates how it may be used to create a ZIP archive. After initializing a new
instance of the ZipArchive class, the instance’s open() method is used to create
a new archive, and the addFile() method is then used to add files to the archive.
Once all the files have been added, the instance’s close() method takes care of
compressing and writing the archive to disk.

NOTE

In order for this listing to work, PHP must be compiled with support for ext/zip (you can
obtain instructions from the PHP manual at http://www.php.net/zip).

Users with older versions of PHP will need to use PEAR’s Archive_Zip package,
freely available from http://pear.php.net/package/Archive_Zip, which
lets you create new ZIP archives, add or remove files to existing archives, and

 4 7 2 P H P P r o g r a m m i n g S o l u t i o n s

extract and list archive contents. The following listing illustrates the process of
creating a new ZIP archive, first initializing an instance of the Archive_Zip class
and then populating an array with the names of files to be added to it. The instance’s
create() method is then used to actually compress the files into a ZIP archive and
save it to disk.

<?php

// include class

include "Archive/Zip.php";

// create object

// specify filename for output file

$zip = new Archive_Zip("www.zip");

// recursively process directories

// add to file array

$iterator = new RecursiveIteratorIterator(↵
new RecursiveDirectoryIterator("files/"));

foreach ($iterator as $key=>$value) {

 $files[] = $iterator->getPathname();

}

// build archive

$zip->create($files) or die("Could not create archive!");

echo "Archive created successfully.";

?>

The Archive_Zip class also exposes extract(), listContent(), add(),
delete(), and merge() methods—no prizes for guessing what these do!

11.16 Creating TAR Archives

Problem
You want to dynamically create a TAR archive.

Solution
Use PEAR’s Archive_Tar class:

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 7 3

<?php

// include class

include "Archive/Tar.php";

// create object

// specify filename for output file

$tar = new Archive_Tar("www.tar");

// recursively process directories

// add to file array

$iterator = new RecursiveIteratorIterator(new ↵
RecursiveDirectoryIterator("files/"));

foreach ($iterator as $key=>$value) {

 $files[] = $iterator->getPathname();

}

// build archive

$tar->create($files) or die("Could not create archive!");

echo "Archive created successfully.";

?>

Comments
PEAR’s Archive_Tar package, freely available from http://pear.php.net/
package/Archive_Tar, is particularly helpful for creating files in the Tar (Tape
Archive) format. To use this package, first create an instance of the Archive_Tar class
(passing the name of the output TAR file to the object constructor) and then invoke
the instance’s create() method with an array containing a file list. The object will
then create a single archive containing all the listed files and save it to disk.

You can extract files from the archive by calling the object’s extract() method,
or view the contents of an existing archive with the object’s listContent()
method.

TIP

If you’d like to create a compressed archive, Archive_Tar supports that option too, allowing you
to apply GZIP or BZIP compression to the TAR archive. To do this, simply add the value "gz" or
"bz2" as a second argument to the Archive_Tar object constructor when instantiating it. Note
that your PHP build must include support for the zlib and bzip2 compression libraries for
this to work.

 4 7 4 P H P P r o g r a m m i n g S o l u t i o n s

TIP

Read a detailed tutorial on Archive_Tar at http://www.melonfire.com/
community/columns/trog/article.php?id=273.

11.17 Resizing Images

Problem
You want to dynamically resize and render an image, such as a digital photo in
a Web-based image gallery.

Solution
Use PHP’s imagecopyresampled() function:

<?php

// define image to resize

$file = "img1154.jpg";

// create object from original image

$imOrig = imagecreatefromjpeg($file);

// get image dimensions

list($width, $height) = getimagesize($file);

// create object for new image

$imNew = imagecreatetruecolor($width * 1.5, $height * 1.5);

// resample and resize old image

imagecopyresampled($imNew, $imOrig, 0, 0, 0, 0, $width * 1.5,↵
$height * 1.5, $width, $height);

// output resized image

header("Content-type: image/jpeg");

imagejpeg($imNew);

imagedestroy($im);

?>

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 7 5

Comments
PHP’s image manipulation toolkit contains the imagecopyresampled() function,
which can be used to alter an image’s dimensions and resample it for the new size.
This ability to dynamically resize images is particularly handy for Web-based photo
galleries, which often need to display photos of varying sizes in a uniform format.

The previous listing illustrates the process. First, an object representing the
original image is created from the image file with the imagecreatefromjpeg()
function, and its dimensions are calculated. Next, a second object is created to
represent the new resized image, and set to 150 percent of the original image size.
The imagecopyresampled() function then takes care of copying the original
(large) image to the new (larger) image, resampling it along the way to maintain
fidelity to the original version. The resampled and resized image can now be
transmitted to the browser with the imagejpeg() function for display.

11.18 Working with Image Metadata

Problem
You want to extract the descriptive information embedded in an image, such as the
metadata or thumbnails placed in digital photos.

Solution
Use PHP’s Exchangeable Image File Format (EXIF) functions:

<?php

// define directory path

$dir = "canon";

// scan directory for matching files

// extract EXIF information from each

// and display

$fileList = glob("$dir/*.jpg");

if (sizeof($fileList) > 0) {

 foreach ($fileList as $file) {

 $exif = exif_read_data($file, 0, true);

 echo "File: $file\n";

 4 7 6 P H P P r o g r a m m i n g S o l u t i o n s

 foreach ($exif as $section => $data) {

 foreach ($data as $key => $value) {

 echo "$section -> $key = $value\n";

 }

 }

 echo "\n";

 }

}

?>

Comments
EXIF is a standard for storing descriptive metadata in image files, particularly JPEG
and TIFF files. The format is commonly used by digital camera vendors to embed
descriptive information in the headers of digital photos. PHP’s exif_read_data()
function can read these headers and extract the information stored within them. The
previous listing illustrates the process.

A common application of PHP’s EXIF support involves extracting an image
thumbnail from the EXIF metadata in a digital photo, and using this thumbnail
in a Web-based image gallery to preview the actual image. This can be easily
accomplished with the exif_thumbnail() function, illustrated here:

<?php

// define directory path

$dir = "canon";

// if file name is provided

// read image thumbnail from file

// send to browser for display

if ($_GET['file']) {

 $file = $_GET['file'];

 $image = exif_thumbnail("$dir/$file");

 if ($image !== false) {

 header("Content-type: image/jpeg");

 echo $image;

 }

// if no file name is provided

// scan directory and list all matching files

// with thumbnails

} else {

 $fileList = glob("$dir/*.jpg");

 if (sizeof($fileList) > 0) {

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 7 7

 echo "<html> <head></head> <body>\n";

 foreach ($fileList as $file) {

 echo "<img src='" . $_SERVER['PHP_SELF']↵ .
"?file=" . basename($file) . "'>\n";

 echo "
" . basename($file) . "<p />\n";

 }

 echo "</body></html>";

 }

}

?>

Here the script checks the named directory for JPEG files and, if available,
displays them in a list. Accompanying each file name is a thumbnail of the image,
generated by the same script from the EXIF headers. The thumbnail is extracted
from the image with the exif_thumbnail() function, and sent to the browser with
an appropriate content header for display.

NOTE

In order for this listing to work, PHP must be compiled with support for ext/exif and
ext/mbstring. (You can obtain instructions from the PHP manual at http://www
.php.net/exif.)

11.19 Monitoring Web Pages

Problem
You want to monitor a Web page for changes.

Solution
Periodically calculate a checksum for the page and send notification in the event of
a change:

<?php

// set database name (SQLite)

$db = "webmon.db";

// set notification e-mail address

$email = "user@localhost";

 4 7 8 P H P P r o g r a m m i n g S o l u t i o n s

// open database file

$handle = sqlite_open($db) or die ("ERROR: Cannot open database");

// create and execute SELECT query

$sql = "SELECT url, md5 FROM urls";

$result = sqlite_query($handle, $sql)↵
or die ("ERROR: " . sqlite_error_string(sqlite_last_error($handle)) ↵
. " (query was $sql)");

// check for records

if (sqlite_num_rows($result) > 0) {

 while(list($url, $oldMD5) = sqlite_fetch_array($result)) {

 // read URL contents

 // generate new checksum and compare with old

 $contents = join ('', file($url));

 $newMD5 = md5($contents);

 if ($oldMD5 != $newMD5) {

 // send notification e-mail for changes

 mail($email, "URL Change Notification", "The URL \"$url\ ↵
" has changed since it was last checked.", "From: Web Monitor ↵
<null@localhost>") or die ("ERROR: Cannot send mail");

 // update database with new MD5

 $sql = "UPDATE urls SET md5='$newMD5' WHERE url='$url'";

 sqlite_query($handle, $sql) ↵
or die ("ERROR: " . sqlite_error_string(sqlite_last_error($handle)) ↵
. " (query was $sql)");

 }

 }

} else {

 echo "No records found";

}

// close database file

sqlite_close($handle);

?>

Comments
To find out if a particular Web page has changed, calculate a checksum for its
contents on a periodic basis and test it against the checksum you created previously.
A difference between the two is a clear indication that the Web page has changed
since it was last checked.

 C h a p t e r 1 1 : W o r k i n g w i t h D i f f e r e n t F i l e F o r m a t s a n d N e t w o r k P r o t o c o l s 4 7 9

The previous listing puts this in practice, using a SQLite database to store a list
of URLs and their associated checksums (the code to create the SQLite database
used in this listing can be obtained from this book’s Web site at http://www.php-
programming-solutions.com). The previous script queries the database for the
list of URLs, reads them in with file(), and calculates a checksum with the md5()
function. This MD5 value is then checked against the stored MD5 value for the
URL. If there is a difference, it means the content at the URL has changed since it
was last checked; this triggers an e-mail alert, and the new MD5 value is saved back
to the database in preparation for the next run.

TIP

For automated Web page monitoring, set this script to run daily from your system’s cron table
or task scheduler.

This page intentionally left blank

481

CHAPTER

12
Working with Exceptions

and Other Miscellanea
IN THIS CHAPTER:
 12.1 Handling Exceptions
 12.2 Defining Custom Exceptions
 12.3 Using a Custom Exception Handler
 12.4 Suppressing Error Display
 12.5 Customizing Error Display
 12.6 Logging Errors
 12.7 Checking Version Information
 12.8 Altering PHP’s Run-Time Configuration
 12.9 Checking Loaded Extensions
12.10 Using Strict Standards

12.11 Profiling PHP Scripts
12.12 Debugging PHP Scripts
12.13 Benchmarking PHP Scripts
12.14 Creating PHP Bytecode
12.15 Creating Standalone PHP Executables
12.16 Localizing Strings
12.17 Executing External Programs
12.18 Using an Interactive Shell
12.19 Using Unit Tests

 4 8 2 P H P P r o g r a m m i n g S o l u t i o n s

P HP comes with a full-featured exception handling API, allowing you to
wrap your code in try-catch blocks that neatly and efficiently catch and
resolve errors. This exception model, new since PHP 5.0, also enables you

replace PHP’s default exception handling mechanisms with your own custom-crafted
alternatives.

This chapter, the last in the book, is broadly classified into two parts. The first
discusses common problems related to the aforementioned exception handling and
error processing mechanism, while the second serves as a grab bag of solutions for
problems that didn’t fit in any other chapter. Thus, in addition to finding out how
to control the display of error messages and write your own exception handler,
you’ll also learn how to profile and benchmark your PHP scripts; execute external
programs from within PHP; alter the PHP configuration at run time; create compiled
PHP bytecode; and create localized PHP applications.

12.1 Handling Exceptions

Problem
You want to recover from exceptions generated by a code block.

Solution
Enclose the code in a try-catch block:

<?php

// turn off error messages

error_reporting(E_NONE);

// try this code

try {

 // open file

 if (!$fh = fopen("somefile.txt", "r")) {

 throw new Exception("Could not open file!", 12);

 }

 // read file contents

 if (!$data = fread($fh, filesize("somefile.txt"))) {

 throw new Exception("Could not read file!", 9);

 }

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 8 3

 // close file

 fclose($fh);

 // print file contents

 echo $data;

// catch errors if any

} catch (Exception $e) {

 echo "Exception! \n";

 echo "Error message: " . $e->getMessage() . " \n";

 echo "Error code: " . $e->getCode() . " \n";

 echo "File and line: " . $e->getFile() . ↵
"(" . $e->getLine() . ") \n";

 echo "Trace: " . $e->getTraceAsString() . " \n";

}

?>

Comments
To use PHP’s exception handling model, it is necessary to wrap your program code in
Java-style try-catch blocks. Here’s what a typical try-catch block looks like:

try {

 execute this block

} catch (exception type 1) {

 execute this block to resolve exception type 1

} catch (exception type 2) {

 execute this block to resolve exception type 2

} ... and so on ...

When PHP encounters code enclosed in such a try-catch block, it first attempts
to execute the code within the try block. If this code is processed without any
exceptions being generated, control transfers to the lines following the try-catch
block. However, if an exception is generated while running the code within the try
block, PHP stops execution of the block at that point and begins checking each catch
block to see if there is a handler for the exception. If a handler is found, the code
within the appropriate catch block is executed; if not, a fatal error is generated.

This approach is illustrated in the previous listing, where exceptions are generated
at two stages: first if the file in question cannot be opened, and second if the file’s
contents cannot be read. In either case, an exception will be generated, and control
will pass to the following catch block, which will generate an error message. To
avoid multiple error messages, PHP’s error_reporting() function is used to
ensure that internal error messages, including fatal errors, are hidden from view;
this ensures that the user only sees what the exception handler generates.

 4 8 4 P H P P r o g r a m m i n g S o l u t i o n s

The exceptions themselves are generated via PHP’s throw statement. The throw
statement needs to be passed the exception type, a descriptive message, and an optional
error code. When the exception is raised, this description and code will be made available
to the exception handler. This is illustrated in the previous listing, where the Exception’s
getMessage(), getCode(), getFile(), getLine(), and getTraceAsString()
methods are used to generate useful information on what went wrong.

12.2 Defining Custom Exceptions

Problem
You want to define your own exceptions, and have each handled in a different way.

Solution
Define new exception types by subclassing the base Exception object, and use
multiple catch blocks to customize how each is handled:

<?php

// turn off error messages

error_reporting(E_NONE);

// subclass the Exception class

class LenException extends Exception {}

class NameException extends Exception {}

class UniqueException extends Exception {}

// function to test a password

function changePassword($str) {

 // password too short

 // trigger an exception

 if(strlen($str) < 8) {

 throw new LenException($str);

 }

 // password contains user name

 // trigger an exception

 if (isset($_SESSION['uname'])) {

 if (ereg($_SESSION['uname'], $str)) {

 throw new NameException($str);

 }

 }

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 8 5

 // password contains insufficient unique characters

 // trigger an exception

 if(strlen(count_chars($str, 3)) < 6) {

 throw new UniqueException($str);

 }

 echo "Your password was successfully changed ($str).";

}

// try this code

try {

 changePassword("h3llo"); // too short

 changePassword("g5gg3gh3"); // not enough uniques

 changePassword("h46wkd3g8"); // acceptable

 // catch errors if any

} catch (LenException $e) {

 print "The password supplied is too short (" . $e->getMessage() .↵
"). Please provide a password containing at least 8 characters.";

} catch (NameException $e) {

 print "The password supplied is based on your username. (" .↵
$e->getMessage() . "). Please provide a different password.";

} catch (UniqueException $e) {

 print "The password supplied does not contain a sufficient number ↵
of unique characters (" . $e->getMessage() . "). Please provide a ↵
password containing at least 6 unique characters";

} catch (Exception $e) {

 echo "Exception! \n";

 echo "Error message: " . $e->getMessage() . " \n";

 echo "Error code: " . $e->getCode() . " \n";

 echo "File and line: " . $e->getFile() . "(" . $e->getLine() . ↵
") \n";

 echo "Trace: " . $e->getTraceAsString() . " \n";

}

?>

Comments
Different exceptions may need to be handled in different ways—for example, a file
access error should be treated differently than an error in an SQL query. PHP enables
you to customize how exceptions are handled, by subclassing the generic Exception
object and using multiple catch blocks, one for each subclass, to handle each one in
a different way.

 4 8 6 P H P P r o g r a m m i n g S o l u t i o n s

The previous listing illustrates this, by extending the base Exception object to
create three new exception classes: LenException(), NameException(), and
UniqueException(). Multiple catch blocks define a different error message for
each exception; depending on which of these exceptions is generated, the appropriate
catch block is activated and the corresponding error message printed.

NOTE

In the previous listing, once an exception is generated, control will pass to the following catch
block. Thus, in order to see the various exception types in action in this example, you will need
to manually comment out the first call to changePassword() before the next one will
be executed.

TIP

A catch block will be triggered by the first matching exception, so you should always arrange
your catch blocks with the most specific ones first. That’s why the previous listing has the
catch block for the generic Exception object listed last.

12.3 Using a Custom Exception Handler

Problem
You want to handle exceptions yourself, rather than having them handled by PHP.

Solution
Write a user-defined function to handle exceptions, and then tell PHP about it with
the set_exception_handler() function:

<?php

// custom exception handler

function exh($e) {

 // when an exception is caught

 // erase all previously-generated output

 ob_end_clean() or die("Cannot erase output buffer");

 // construct the error string

 $timestamp = date("d-m-Y H:i:s", mktime());

 $errorStr = "$timestamp ". get_class($e) . ": ";

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 8 7

 $errorStr .= $e->getMessage() . " in ";

 $errorStr .= $e->getFile() . "(line " . $e->getLine() . ")\n";

 // log the error to a file

 error_log($errorStr, 3, "error_log") or↵
die("Cannot write to error log");

 // display error message as output

 echo "This is the custom exception handler. Something went wrong,↵
which is why you're meeting me. Give the webmaster a call and ask↵
him to check the error log for [$timestamp]";

}

// turn off error reporting

error_reporting(E_NONE);

// start output buffering

ob_start();

// set a custom handler for all exceptions

set_exception_handler("exh");

// sub-class exception

class LoadException extends Exception { }

class DBException extends Exception { }

// load SQLite extenstion

if (!extension_loaded("sqlite")) {

 if(!dl("php_sqlite.dll")) {

 throw new LoadException("Cannot load extension ↵
file: php_sqlite.dll");

 }

}

// open connection

if (!$handle = sqlite_open('products.db')) {

 throw new DBException("Cannot connect to SQLite database");

}

// create and execute INSERT query

$sql = "INSERT INTO products (id, name) VALUES ('5', 'pears')";

if (!sqlite_query($handle, $sql)) {

 throw new DBException("Cannot execute SQL query [$sql] " ↵

 4 8 8 P H P P r o g r a m m i n g S o l u t i o n s

. sqlite_error_string(sqlite_last_error($handle)));

}

// close connection

sqlite_close($handle);

echo "SQLite transaction successfully completed";

?>

Comments
PHP enables you to divert all exceptions to a custom function that you define instead
of sending them to the default exception handler. You must set this custom function
up to accept an Exception object as input; you can then process this object whatever
way you choose.

The previous listing illustrates how this might work. First, PHP error display is
turned off, and output buffering is turned on. Two new exception types are defined
by subclassing the base Exception object, and the set_exception_handler()
function is used to notify PHP that all exceptions are to be sent to the user-defined
function exh().

Next, an attempt is made to load the SQLite extension, connect to an SQLite
database, add a new record, and exit. Any exceptions thrown during this process will
be handled not by PHP, but by the user-defined function exh(). When this function
is invoked, it first clears the output buffer (to ensure that no stray output is sent to
the browser or console), and then uses PHP’s error_log() function to save details
about the exception (including the exception name, message, script name, and line
number) to a log file. Given that the output buffer is now empty and it’s generally
considered a Bad Thing to leave the user staring at an empty screen, the handler also
prints a brief error message to the output device before exiting.

Of course, this is just one example—you could just as easily write a custom
exception handler that (a) saved exception information to a database; (b) e-mailed it
to an administrator; (c) wrote it to the system logger; or (d) or did all of the above.
Using the set_exception_handler() function to divert exceptions to your own
handler gives you complete flexibility in how exceptions in your applications are
handled, and it is very useful in building a professional application.

TIP

Make sure that the definition of the custom exception handler precedes the call to set_
exception_handler().

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 8 9

12.4 Suppressing Error Display

Problem
You want to prevent PHP from displaying error messages.

Solution
Use the @ error-suppression operator before a function call:

<?php

// call a function that returns a warning

// suppress warning with @

echo @file_get_contents("non-existent-file.txt");

?>

Or, set PHP’s error reporting level to E_NONE:

<?php

// suppress all error messages (except fatal errors)

error_reporting(E_ERROR);

// call a function without required arguments

echo strrev();

?>

Comments
Prefixing the @ operator to a function invocation suppresses any error messages
that function might generate. However, this @ operator should only be used as a last
resort in production code, as it can create a great deal of confusion when you’re
trying to track down bugs at a later date.

A more general approach to error display might be to set PHP’s global error
reporting level to E_ERROR, which turns off the display of all non-fatal errors.
However, parse errors, which occur due to syntactical errors in PHP code, cannot
be controlled via this setting, and will continue to display regardless of the error
reporting level.

You can turn off the display of all errors (including fatal errors) by setting the
error reporting level to E_NONE, as in the following example:

<?php

// suppress all error messages (except parse errors)

error_reporting(E_NONE);

 4 9 0 P H P P r o g r a m m i n g S o l u t i o n s

// call a non-existent function

// returns a fatal error and stops script processing

// error message is suppressed

echo file_mangle("non-existent-file.txt");

?>

Although the previous script will not display a visible error message, script
execution will still stop at the point of error and statements subsequent to that point
will not be executed (possibly leaving the user facing a blank screen). All error_
reporting() does is permit control over which errors are displayed; it doesn’t
prevent them from being generated in the first place.

It must also be noted that suppressing the display of fatal errors, as with E_NONE
in the previous listing, is a Bad Thing. It is poor programming practice to hide and
ignore errors in this manner; it is far better—and more professional—to anticipate
the likely errors ahead of time, and write defensive code that watches for them and
handles them appropriately.

TIP

During your development process, go to the other extreme and set PHP’s global error reporting
level to E_ALL—the highest error reporting level—as this is useful for debugging your code.

12.5 Customizing Error Display

Problem
You want to control the manner in which errors are displayed.

Solution
Divert errors to a user-defined function, set with the set_error_handler()
function:

<?php

// custom error handler

function eh ($type, $msg, $file, $line) {

 // construct the error string

 $errorStr = "Date: " . date("d-m-Y H:i:s", mktime()) . "\n";

 $errorStr .= "Error type: $type\n";

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 9 1

 $errorStr .= "Error message: $msg\n";

 $errorStr .= "Script: $file($line)\n";

 $errorStr .= "Host: " . $_SERVER['HTTP_HOST'] . "\n";

 $errorStr .= "Client: " . $_SERVER['HTTP_USER_AGENT'] . "\n";

 $errorStr .= "Client IP: " . $_SERVER['REMOTE_ADDR'] . "\n";

 $errorStr .= "Request URI: " . $_SERVER['REQUEST_URI'] . "\n\n";

 // display error message

 echo nl2br("Due to an internal error, this script has been ↵
terminated. The following lines display more information on the error: ↵
\n\n $errorStr");

 // end the script

 exit();

}

// define a custom handler for errors

set_error_handler("eh");

// generate a warning

echo file_get_contents("non-existent-file.txt");

?>

Comments
PHP’s set_error_handler() function can be used to define a custom function, to
which all notices and warning messages are automatically sent. This function must
be capable of accepting a minimum of two mandatory arguments (the error type and
corresponding descriptive message) and up to three additional arguments (the file
name and line number where the error occurred and a dump of the variable space at
the time of error).

In the previous listing, this user-defined function is named eh(), and when
it receives an error, it constructs a simple error message containing information
on the time, type, and location of error. This information is then combined with
various server environment variables (the client type and IP address, the URL being
requested) and displayed to the user.

TIP

Make sure that the definition of the custom error handler precedes the call to set_error_
handler().

 4 9 2 P H P P r o g r a m m i n g S o l u t i o n s

It’s worth noting, however, that the technique outlined above is only suitable
for catching notices and warnings; it cannot be used for fatal errors or parse errors.
While parse errors cannot be intercepted due to their very nature, it’s possible to use
PHP’s output buffering functions to catch fatal errors.

The technique essentially consists of initializing an output buffer to hold page
content and examining this buffer for error strings before sending it to the client.
If no error strings are present, the page may safely be sent as is; if error strings
are present, the contents of the output buffer can be replaced with a customized
error message. The following listing illustrates the code for this technique:

<?php

// custom output buffer handler

function oh($buf) {

 // if buffer contains "fatal error" string

 // construct the error string and display it

 if (preg_match("/Fatal error<\/b>: (.+)/", $buf)) {

 return "This script generated a fatal error and has been ↵
terminated with extreme prejudice.";

 } else {

 return $buf;

 }

}

// define a custom output handler

ob_start("oh");

// generate a fatal error

abc();

?>

Here, a user-defined output handling function, oh(), is called before the contents
of the output buffer are sent to the client. This function scans the buffer for "Fatal
error" strings and, if found, replaces the buffer with a customized error message.
If no such strings are found, the buffer is returned as is to the client.

12.6 Logging Errors

Problem
You want to log error messages or events to a file.

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 9 3

Solution
Use PHP’s error_log() function:

<?php

$arr = array("chocolate", "strawberry", "peach");

if (!in_array('fish', $arr)) {

 // log error to file

 error_log("No fish available", 3, "error_log");

 // log error to system logger

 error_log("No fish available", 0);

 // log error to e-mail address

 error_log("No fish available", 1, "my.address@my.domain",↵
"From: root@localhost");

 exit();

}

?>

Comments
PHP’s error_log() function is designed to send log messages to different
destinations, including a log file, an e-mail address, or the system logger. The
function accepts two mandatory arguments—the log message and an integer
indicating the destination—and one or more optional arguments, depending on the
destination. An integer value of 0 indicates that the message should be sent to the
system logging device; a value of 1 indicates that the message should be sent to
an e-mail address, with the address and extra headers specified as third and fourth
arguments, respectively; a value of 2 indicates that the message should be sent to a
remote debugger; and a value of 3 sends the message to a file, with the file location
specified as the third parameter.

An alternative to the error_log() function is PEAR’s Log package, freely
available from http://pear.php.net/package/Log. This package supports the
sending of log messages to even more destinations: a file, an e-mail address, an SQL
database, the system logger, and the PHP console. Here’s an example of it in action:

<?php

// include class

include "Log.php";

// create Log object

$l = &Log::singleton("file", "my.log");

 4 9 4 P H P P r o g r a m m i n g S o l u t i o n s

// log to file

$arr = array("chocolate", "strawberry", "peach");

if (!in_array("fish", $arr)) {

 $l->log("No fish available", PEAR_LOG_ERR);

}

$conn = @mysql_connect("localhost", "joe", "pass");

if (!$conn){

 $l->log("Could not connect to database in " .↵
$_SERVER["PHP_SELF"], PEAR_LOG_CRIT);

 exit();

}

?>

TIP

Notice that the PEAR Log package enables you to specify an optional log level as the second
argument to its log() method. This log level may be used to distinguish between critical and
non-critical messages, and may be used to filter out high-priority messages from general notices
or debug messages. Five different log levels are supported, ranging from notification to critical.

12.7 Checking Version Information

Problem
You want to find out which version of PHP (or a PHP extension) is in use, perhaps
prior to installing your PHP application.

Solution
Use the phpversion() or zend_version() functions to retrieve version information
for PHP or the Zend engine:

<?php

echo "PHP version: " . phpversion() . " \n";

echo "Zend version: " . zend_version() . " \n";

?>

Or, call phpversion() with the extension name as argument to retrieve version
information for that extension:

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 9 5

<?php

echo "PHP MySQL library version: " . phpversion('mysql') . " \n";

echo "PHP EXIF library version: " . phpversion('exif') . " \n";

?>

Comments
The phpversion() function is your one-stop shop to retrieve version information
on PHP itself, or any of its extensions. Simply call phpversion() to get the current
PHP version number, and add an optional extension name argument to get the
version number of the corresponding extension.

This function is often used in combination with the version_compare()
function to check for a minimum PHP version prior to application installation or
before calling a relatively new function, as in the next listing:

<?php

// check version

if (!version_compare(phpversion(), '5.2.0', '>=')) {

 die ("You need PHP 5.2.0 or better to run this script. Exiting...");

}

?>

TIP

For detailed information on your current PHP build, call phpinfo(), as shown here:
<?php

phpinfo();

?>

You can also pass phpinfo() an additional parameter to customize the output further,
grabbing (for example) information on only environment variables, loaded modules, or EGPCS
(Environment, Get, Post, Cookies, Server) variables.

12.8 Altering PHP’s Run-Time Configuration

Problem
You want to retrieve or alter the value of a PHP configuration variable at run time.

 4 9 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use the ini_get() function to retrieve the value of a PHP configuration variable:

<?php

// get the value of a PHP configuration variable

echo "The current include path is: " . ini_get('include_path');

?>

Use the ini_set() function to set or alter the value of a PHP configuration
variable at run time:

<?php

// alter the value of a PHP configuration variable

ini_set('max_execution_time', 600);

?>

Comments
PHP’s ini_set() and ini_get() functions are commonly used to retrieve or alter
the value of PHP variables, such as the script execution timeout or the maximum file
upload size, on a per-script basis at run time. The ini_get() function accepts the
name of a PHP variable and returns its value to the caller; the ini_set() function
accepts a variable name and value, and sets the variable to that value. The previous
listings illustrate how they may be used.

Note that settings changed via ini_set() are only valid for the duration of the
script in which they are made; once the script terminates, the global value of the
variable, as set in the php.ini configuration file, again takes precedence.

12.9 Checking Loaded Extensions

Problem
You want to check if a particular PHP extension is loaded before using it in a script.

Solution
Use PHP’s extension_loaded() function:

<?php

// check if extension is loaded

if (!extension_loaded("mysqli")) {

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 9 7

 die ("MySQLi extension not loaded, terminating...");

}

// if loaded, attempt connection

$conn = @mysqli_connect("localhost", "user", "pass", "db1")↵
or die("Unable to connect");

unset($conn);

?>

Comments
To avoid nasty error messages about undefined functions, it’s always a good idea to
check for the presence of a particular extension before using it in your scripts. PHP’s
extension_loaded() function accepts the name of an extension, and returns a
Boolean value indicating whether or not it is available for use. The previous listing
illustrates an example of how it may be used to check for the presence of ext/
mysqli, terminating the script if the extension is not loaded.

NOTE

The extension_loaded() function must be supplied with the internal PHP name for an
extension, rather than its file name (the two are often different, especially on Windows systems).
You can obtain this list of names by calling the PHP binary with the -m option.

12.10 Using Strict Standards

Problem
You want to verify if a PHP script is written for maximum interoperability and
forward compatibility.

Solution
Set PHP’s error reporting level to E_STRICT:

<?php

// turn on strict standards

error_reporting(E_STRICT);

// execute some code

echo date("Y-m-d", mktime());

?>

 4 9 8 P H P P r o g r a m m i n g S o l u t i o n s

Comments
When set to E_STRICT, PHP inspects your code at run time and automatically
generates recommendations about how it may be improved. Using E_STRICT
can often provide a heads-up on functions that will break in a future version
of PHP, and, as such, using it is recommended to improve the long-term
maintainability of your code.

The previous listing illustrates this clearly. When the script is executed, PHP will
generate a notice about the inappropriate use of mktime(), and instead suggest
using the time() function. Try it for yourself and see—you’ll be surprised by how
much your code can be improved!

12.11 Profiling PHP Scripts

Problem
You want to analyze the performance of a script to identify bottlenecks and areas
for optimization.

Solution
Use PHP’s Xdebug extension.

Comments
PHP’s Xdebug extension, available for both Windows and *NIX flavors of PHP
from http://www.xdebug.org/, can be used to profile a PHP script and generate
useful data for performance analysis. The profiler can be enabled via a php.ini
configuration setting (see the following Note, which describes the process in greater
detail), and it generates detailed statistics on the amount of time spent per function call
in a script and the total time spent on script compilation, processing, and execution.
These statistics make it possible to see which function calls are responsible for the
maximum processing overhead, and thus identify areas for potential optimization.

Xdebug’s profiling information is formatted as a so-called cachegrind file,
which may be viewed with either WinCacheGrind (http://sourceforge
.net/projects/wincachegrind/) on Windows or KCachegrind (http://
kcachegrind.sourceforge.net/) on *NIX. Profiles are stored in the output
directory specified in the xdebug.profiler_output_dir variable in PHP’s php
.ini configuration file. Figure 12-1 illustrates what such a profile might look like:

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 4 9 9

NOTE

PHP’s Xdebug extension is installed in the usual way, in PHP’s ext/ directory, and activated by
adding the zend_extension_ts = /path/to/xdebug/ext directive to the
php.ini configuration file. You must also specify the xdebug.profiler_enable,
xdebug.profiler_output_dir, and xdebug.trace_output_dir
variables in the configuration file. Profiling will then take place automatically for every script
executed through PHP (although this may be disabled on a per-script basis if needed). For detailed
installation instructions, visit http://xdebug.org/install.php.

NOTE

The Xdebug extension overrides PHP’s default exception handling routines, providing more
detailed debugging output and stack traces for both fatal and non-fatal errors. Figure 12-2 has
an example.

Figure 12-1 Xdebug profile of a PHP script, as viewed in WinCacheGrind

 5 0 0 P H P P r o g r a m m i n g S o l u t i o n s

An alternative is to use PEAR’s Benchmark class, available from http://pear
.php.net/package/Benchmark, to profile your PHP code. Here, the profiler is
activated with a call to its start() method, and deactivated with a call to stop();
these calls typically appear at the beginning and end of a script, although they
may also be used to activate the profiler only for specific subsections of code (for
example, a particular function or class only). Within these two calls, it’s a good idea
to set user-defined section “markers” to identify specific activities or transactions the
script is undertaking; because these markers are included in the final report, they can
help identify which transactions are responsible for what percentage of overhead.

The next listing illustrates this class in action:

<?php

// include class

include "Benchmark/Profiler.php";

Figure 12-2 Xdebug stack trace

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 0 1

// initialize profiler

$profiler = new Benchmark_Profiler();

// start profiler

$profiler->start();

// open database file

$profiler->enterSection("Connection"); // section start marker

$handle = sqlite_open("products.db") or ↵
die ("ERROR: Cannot open database");

$profiler->leaveSection("Connection"); // section end marker

// create and execute SELECT query

$profiler->enterSection("Query");

$sql = "SELECT id, name FROM products";

$result = sqlite_query($handle, $sql)↵
or die ("ERROR: " . sqlite_error_string(sqlite_last_error($handle)) .↵
" (query was $sql)");

// check for returned rows

// print if available

if (sqlite_num_rows($result) > 0) {

 while($row = sqlite_fetch_array($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

}

$profiler->leaveSection("Query");

// close database file

$profiler->enterSection("Connection");

sqlite_close($handle);

$profiler->leaveSection("Connection");

// stop profiler

$profiler->stop();

$profiler->display();

?>

Figure 12-3 illustrates a sample report generated by the profiler.

TIP

You can also use the Benchmark package to obtain detailed timing information on a script.
See the listing in “12.13: Benchmarking PHP Scripts” for more.

 5 0 2 P H P P r o g r a m m i n g S o l u t i o n s

12.12 Debugging PHP Scripts

Problem
You want to trace a script’s execution or keep a watch on specific variables over the
duration of a script.

Solution
Use the PHP_Debug class:

<?php

// include class

include "Debug.php";

include "Debug/Renderer/HTML_Table_Config.php";

Figure 12-3 Profile of a PHP script, as generated by the Benchmark package

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 0 3

// create object

$debug = new Debug();

$debug->add("Entering script..."); // set debug message

?>

<html>

<head>

<?php

// generate stylesheet for debug output formatting

$debug->add("Generating CSS..."); // set debug message

$html = Debug_Renderer_HTML_Table_Config::singleton()->getConfig();

print($html['HTML_TABLE_stylesheet']);

?>

</head>

<body>

<?php

// function to get an arbitrary number of bytes

// from a file

function getBytes($file, $startByte, $endByte) {

 // import debugger object

 global $debug;

 $debug->add("Entering getBytes()..."); // set debug message

 $debug->dump($file, "file"); // dump variable

 $debug->dump($startByte, "start byte"); // dump variable

 $debug->dump($endByte, "end byte"); // dump variable

 // check for valid range endpoints

 if ($endByte < $startByte) {

 die("Ending byte number must be greater than or equal to ↵
starting byte number!");

 }

 // open the file for reading

 $fp = fopen($file, "rb") or die("Cannot open file");

 // seek to starting byte

 // retrieve data by character

 // until ending byte

 fseek ($fp, $startByte, SEEK_SET);

 while (!(ftell($fp) > $endByte)) {

 $debug->add("Entering ftell() loop..."); // set debug message

 $data .= fgetc($fp);

 $debug->dump($data, "data string"); // dump variable

 }

 5 0 4 P H P P r o g r a m m i n g S o l u t i o n s

 // close the file

 fclose($fp) or die ("Cannot close file");

 $debug->dump($data, "getBytes retval"); // dump variable

 $debug->add("Exiting getBytes()..."); // set debug message

 // return data to caller

 return $data;

}

// return first 10 bytes of file

echo getBytes("fortunes.txt", 0, 9);

// display debug information

$debug->add("Exiting script...");

$debug->display();

?>

</body>

</html>

Comments
The PHP_Debug class, freely available from http://www.php-debug.com/,
provides a PEAR-compliant framework for tracing script execution, watching and
dumping variables, calculating execution times, and other common debugging tasks.
The previous listing illustrates some of these functions in the context of a user-
defined function to extract specific byte ranges from a text file.

After initializing an instance of the PHP_Debug class, the instance’s add()
method can be used to trace script execution by generating messages at user-
defined points in the script—for example, when entering a function or a loop.
At any stage, the dump() method may be used to view the output of a particular
variable, while a watch() method can be used to monitor one or more script
variables and send notifications to the debug console when their value changes.
At any time, the display() method can be used to send the debugging output
to the output device.

Figure 12-4 illustrates the debugging output of the previous listing.

NOTE

The PHP_Debug class overrides PHP’s default error handler for warnings and notices, incorporating
them in the output of display().

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 0 5

12.13 Benchmarking PHP Scripts

Problem
You want to run a script or code block repeatedly to evaluate its performance under load.

Solution
Use PEAR’s Benchmark class:

<?php

// function to connect to an SQLite database

// execute a query and process the results

Figure 12-4 Debugging a PHP script

 5 0 6 P H P P r o g r a m m i n g S o l u t i o n s

function getData() {

 // connect to database

 $handle = sqlite_open("products.db")↵
or die ("ERROR: Cannot open database");

 // create and execute SELECT query

 $sql = "SELECT id, name FROM products";

 $result = sqlite_query($handle, $sql) or die ("ERROR: " .↵
 sqlite_error_string(sqlite_last_error($handle)) . ↵
" (query was $sql)");

 // check for returned rows

 // print if available

 if (sqlite_num_rows($result) > 0) {

 while($row = sqlite_fetch_array($result)) {

 echo $row[0] . " = " . $row[1] . "\n";

 }

 }

 // close database file

 sqlite_close($handle);

}

// include class

include "Benchmark/Iterate.php";

// initialize iterator

$bench = new Benchmark_Iterate();

// execute function 100 times

// print results

$bench->run(100, 'getData');

$bench->display();

?>

Comments
PEAR’s Benchmark class, available from http://pear.php.net/package/
Benchmark, includes an Iterator designed specifically to run a piece of code
repeatedly, calculate the time taken for each execution, and generate total and
average time statistics. The previous listing illustrates it in action, using it to

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 0 7

repeatedly execute a user-defined function that connects to a SQLite database,
executes a query, and processes the result. The class’ run() method specifies
the number of iterations as well as the name of the function to run, while the
display() method generates a report (see Figure 12-5) on the results.

12.14 Creating PHP Bytecode

Problem
You want to encrypt your PHP code so that it cannot be viewed by others.

Figure 12-5 Results of repeatedly executing a code block with the Benchmark package

 5 0 8 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Convert your PHP scripts into bytecode with PHP’s ext/bcompiler extension:

<?php

// define source file

$source = "sqlite-view-records.php";

if (!file_exists($source)) {

 die("Cannot find source file.");

}

// open file handle for writing

$target = basename($source, ".php") . "-bin.php";

$fh = fopen($target, "w") or die("Cannot open file.");

// write header, content and footer

bcompiler_write_header($fh) or die("Cannot write header.");

bcompiler_write_file($fh, $source) or die("Cannot write contents.");

bcompiler_write_footer($fh) or die("Cannot write footer.");

// close file

fclose($fh);

// print success message

echo "Binary file [$target] successfully created";

?>

Comments
PHP ext/bcompiler extension lets you turn your PHP scripts into binary code,
making it impossible for them to be reverse-engineered. The process is fairly simple:
create a new file, then use the bcompiler_write_header() and bcompiler_
write_footer() functions to write the appropriate binary header and footer to the
file. Sandwiched between these two function calls is bcompiler_write_file(),
which does the heavy lifting of actually reading the original PHP script, converting it
to bytecode and writing it to the new file.

NOTE

Although it’s not possible to re-create the original ASCII source from a bytecoded file, it may still
be possible to view some of the original ASCII strings within it with a hex editor. For this reason,
ensure that your scripts don’t contain sensitive information (such as MySQL access codes).

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 0 9

Once created, this bytecode will function in exactly the same manner as the
original PHP script—you can access it through a browser as before or execute it
at the console through the PHP command-line interface—but if you attempt to
view it in an ASCII text editor, you’ll see binary strings instead of readable PHP
code blocks. This makes this technique particularly suitable for distributing PHP
applications in a proprietary format, or to protect particular classes or functions by
encoding them.

TIP

According to the PHP manual, encoding your PHP scripts in this manner can improve performance
by up to 30 percent; however, the size of the bytecode file will be significantly larger than that of
the original script.

NOTE

In order for this listing to work, PHP must be compiled with support for the bcompiler
extension (you can obtain instructions from the PHP manual at http://www.php.net/
bcompiler).

12.15 Creating Standalone PHP Executables

Problem
You want to create a standalone PHP executable that can be run at the console
without requiring the presence of the PHP interpreter.

Solution
Create your PHP script in the usual way:

File: print-primes.php

<?php

// list all primes between 2 and some integer

// using the Sieve of Erastothenes

function listPrimes($end) {

 // generate an array of all possible integers

 // between the first prime and the supplied limit

 $sieve = range(2, $end);

 5 1 0 P H P P r o g r a m m i n g S o l u t i o n s

 // retrieve the size of the array

 $size = sizeof($sieve);

 // reset internal array pointer to beginning of array

 reset($sieve);

 // iterate over the array

 while (list($key, $val) = each($sieve)) {

 // for each element

 // check if subsequent elements are divisible by it

 // remove them from the array if so

 for ($x=$key+1; $x<$size; $x++) {

 if ($sieve[$x] % $val == 0) {

 unset($sieve[$x]);

 }

 }

 }

 // at the end, elements left in array are primes

 return $sieve;

}

// list all the primes between 2 and 100

// result: "2 3 5 7...83 89 97"

echo implode(" ", listPrimes(100));

?>

Then use the Bambalam PHP EXE Compiler/Embedder (Windows) to turn it into
an executable:

shell> bamcompile.exe print-primes.php

Bambalam PHP EXE Compiler/Embedder 1.21

Mainfile: print-primes.php

Outfile: print-primes.exe

Encoding and embedding print-primes.php

get-php-version.exe created successfully!

shell> print-primes.exe

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 1 1

Comments
The Bambalam PHP EXE Compiler/Embedder, freely available from http://
www.bambalam.se/bamcompile/, is a command-line tool to convert one or
more PHP scripts into standalone Windows executables. This makes it possible to
create independent PHP applications that will work on any Windows system, while
also preventing easy access to the application’s source code. If a script uses one or
more extensions, the compiler supports adding these extensions to the standalone
executable to eliminate external dependencies. The previous listing illustrates the
process of turning a PHP script into an executable.

Note that the Bambalam PHP compiler doesn’t create machine code, but instead
simply embeds the target PHP script(s) inside a launcher executable. This launcher,
which is similar to the PHP interpreter, creates a PHP environment for the target
PHP script(s) to execute.

NOTE

The Bambalam PHP compiler is an open-source tool, released without any warranties. As such, its
behavior may not always be consistent and the final standalone executable may not always work
as advertised, a problem most noticeable with the embedding of external extensions. Further,
the compiler uses a PHP 4.x launcher, and doesn’t support PHP 5.x or PHP 6.x as of this writing.
Extensive testing is recommended if you plan to use this tool for production use.

12.16 Localizing Strings

Problem
You want your application to display in the local language.

Solution
Select a locale, and then wrap the strings you wish to translate in calls to gettext()
such that PHP knows to replace them with local translations:

<?php

// set language to French

putenv("LANGUAGE=fr_FR");

setlocale(LC_ALL, "fr_FR");

// set path to translation table

bindtextdomain("messages", "locale/");

5 1 2 P H P P r o g r a m m i n g S o l u t i o n s

// attach to domain

textdomain("messages");

// perform translation

// result: "Comment allez-vous?"

echo gettext("How are you?");

?>

Comments
PHP’s gettext() function provides a framework to internationalize your
application by replacing its input arguments with a locale-specific translation.
The previous listing illustrates the process. First, the locale must be specified,
both by setting the $LANGUAGE environment variable and setting the PHP locale
with setlocale(). Next, the bindtextdomain() function sets the disk path
to the binary translation files and binds it to a “domain,” and the textdomain()
function attaches the application to the domain.

With these preliminaries out of the way, the gettext() function is called on
every string that requires translation. In the previous listing, the language is set
to French, and so gettext() will look up the disk location locale/fr_FR/
LC_MESSAGES/messages.mo for the binary translation file, find the string, and
replace it with its translated equivalent.

Creating Translation Files
In order for this solution to work, your PHP build must include support for the
ext/gettext extension. Additionally, you will need to create compressed
binary translation files (.mo files) for the languages you plan to support. Very
briefly, the process to create .mo files for a language is as follows:

 1. Install the gettext-runtime, gettext-tools, and libiconv packages.

 2. Extract all translatable strings from your application scripts with the
xgettext utility.

 3. Edit the resulting .po file and enter translations for each string.

 4. Turn the .po file into a compressed binary .mo file with the msgfmt utility.

 5. Place the .mo file in your PHP application’s locale/ directory.

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 1 3

12.17 Executing External Programs

Problem
You want to execute an external program from within a PHP script, and capture its
output in a PHP variable.

Solution
Use PHP’s exec() function:

<?php

// get uptime

echo "Current server uptime is: " . exec(escapeshellcmd("/bin/uptime"));

?>

Comments
PHP’s exec() function accepts a single argument, representing the command to be
executed, runs it, and returns the last line of output. In case the command generates
more than a single line of output, this output may be captured in a PHP array,
specified as the second argument to exec(). Here’s an example:

<?php

// get process listing

exec(escapeshellcmd("/bin/ps ax"), $out);

echo "<xmp>" . join("\n", $out) . "</xmp>";

?>

You can obtain the tools required for this process (on both *NIX and
Windows) from http://www.gnu.org/software/gettext/, while you
can obtain instructions on the process from http://en.wikipedia.org/
wiki/Gettext and the discussion thread at http://www.aota.net/
forums/showthread.php?threadid=10615.

 5 1 4 P H P P r o g r a m m i n g S o l u t i o n s

An alternative to exec() is the passthru() function, which returns the raw
output from a command and is good for sending binary data from a command-line
call to a requesting client. Here’s an example of how you might use it:

<?php

// display image

header("Content-type: image/jpeg");

passthru(escapeshellcmd("/bin/cat logo.jpg"));

?>

NOTE

Using user-supplied input in an exec() call is always a risky proposition, because there’s
always a possibility that a hacker might use special characters in the input to open a back door
into the system. For this reason, you must always “sanitize” command strings and arguments
by escaping special characters within them with quotes and backslashes. PHP provides the
escapeshellcmd() and escapeshellarg() functions for this purpose.

12.18 Using an Interactive Shell

Problem
You want to enter PHP commands interactively, at a shell prompt.

Solution
Use PHP with the -a command-line argument:

shell> php -a

Interactive mode enabled

<?php

echo "hello world";

hello world

print strlen("99 bottles of beer");

18

echo ini_get('error_reporting');

2039

?>

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 1 5

Comments
Other scripting languages, such as Perl and Ruby, come with an interactive shell that
enables developers to enter commands and view the response immediately. PHP too
has such a built-in capability, which is activated by calling the php binary with the
-a command-line option. The previous listing illustrates it in action.

It’s also possible to emulate this interactive shell with PEAR’s PHP_Shell
package, available from http://pear.php.net/package/PHP_Shell. Once the
package is installed, activate it by executing the examples/php_shell_cmd.php
program from the package distribution. This will launch the shell, and enable you to
interactively use PHP by typing in commands at the shell prompt and receiving an
immediate response. For example:

shell> php -q php-shell-cmd.php

PHP-Barebone-Shell - Version 0.3.0

(c) 2006, Jan Kneschke <jan@kneschke.de>

>> use '?' to open the inline help

>> echo "hello world";

hello world

>> print strlen("mary had a little lamb");

22

>> ini_get('post_max_size');

'8M'

>>

12.19 Using Unit Tests

Problem
You want to apply test-driven development (TDD) techniques for a PHP application,
class, or function.

Solution
First, use the PHPUnit testing framework to define unit tests for your application:

File: shoppingListTest.php

<?php

// include testing framework

include_once "PHPUnit/Framework.php";

 5 1 6 P H P P r o g r a m m i n g S o l u t i o n s

// include class to be tested

include "shoppingList.php";

// test class

class shoppingListTest extends PHPUnit_Framework_TestCase {

 // initialization

 public function setUp() {

 $this->groceries = new shoppingList;

 }

 // deinitialization

 public function tearDown() {

 unset($this->groceries);

 }

 // test the add() method

 public function testAddingItem() {

 $this->groceries->add("milk", 2);

 $actual = $this->groceries->get();

 $expected = array("milk" => 2);

 $this->assertEquals($expected, $actual);

 }

 // test the remove() method with a valid item

 public function testRemovingItem() {

 $this->groceries->add("milk", 2);

 $this->groceries->add("eggs", 6);

 $this->groceries->remove("milk");

 $actual = $this->groceries->get();

 $expected = array("eggs" => 6);

 $this->assertEquals($expected, $actual);

 }

 // test the add() and remove() method in combination

 public function testAddingRemovingItem() {

 $this->groceries->add("milk", 2);

 $this->groceries->add("soap", 3);

 $this->groceries->add("spoons", 24);

 $this->groceries->add("eggs", 7);

 $this->groceries->remove("spoons");

 $actual = $this->groceries->get();

 $expected = array("eggs" => 7, "milk" => 2, "soap" => 3);

 $this->assertEquals($expected, $actual);

 }

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 1 7

 // test the pretty() method

 public function testPretty() {

 $this->groceries->add("milk", 2);

 $this->groceries->add("soap", 3);

 $this->groceries->add("spoons", 24);

 $actual = $this->groceries->pretty();

 $expected = "milk(2) soap(3) spoons(24) ";

 $this->assertEquals($expected, $actual);

 }

 // test the remove() method with an invalid item

 public function testException() {

 try {

 $this->groceries->add("milk", 2);

 $this->groceries->add("eggs", 6);

 $this->groceries->remove("sugar");

 } catch (KeyException $expected) {

 return;

 }

 $this->fail("A KeyException was not thrown");

 }

}

?>

File: shoppingList.php

<?php

// example class

class shoppingList {

 // constructor

 public function __construct() {

 $stack = array();

 }

 // add item to list with quantity

 public function add($item, $quantity) {

 $this->stack[$item] = $quantity;

 }

 // remove item from list

 public function remove($item) {

 if (array_key_exists($item, $this->stack)) {

 unset($this->stack[$item]);

 5 1 8 P H P P r o g r a m m i n g S o l u t i o n s

 } else {

 throw new KeyException("Cannot find item in list");

 }

 }

 // get list

 public function get() {

 return $this->stack;

 }

 // pretty-print list

 public function pretty() {

 foreach ($this->stack as $k=>$v) {

 $str .= "$k($v) ";

 }

 return $str;

 }

}

// define custom exception for use

// in example class

class KeyException extends Exception { }

?>

Then execute these tests by running the test fixture through PHPUnit’s command-
line test runner:

shell> ./phpunit.php shoppingListTest shoppingListTest.php

PHPUnit 3.0.0 by Sebastian Bergmann.

.....

Time: 00:00

OK (5 tests)

Comments
PHPUnit, available from http://phpunit.sourceforge.net/, is an open-
source framework for automated unit testing in PHP. You may use it to write test
cases for a PHP application or class, and exposes common test assertion methods
such as assertEquals(), assertTrue(), assertFalse(), assertSame(),
assertContains(), and assertType(), as well as custom methods to test
exceptions and printed output.

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 1 9

The previous listing assumes that testing is required for a user-defined class,
shoppingList(), which implements a PHP associative array to hold item names
and quantities. This class should expose four methods in its first iteration: add(),
which adds a new item to the list with its associated quantity; remove(), which
removes an existing item from the list, throwing a custom KeyException if the
item does not exist; get(), which returns the list to the caller; and pretty(),
which prints the current contents of the list in a human-readable format. The PHP
code for this class can be seen in the file shoppingList.php, included in the
previous listing.

To implement unit tests for this class, it is necessary to first include the PHPUnit
testing framework, as well as the class definition. Tests are themselves defined
within a class, which extends the PHPUnit_Framework_TestCase class and is
named like the class to be tested with an additional "Test" suffix; thus, tests for
the shoppingList() class are defined in a new shoppingListTest() class.
Two public methods, setUp() and tearDown(), work as the equivalent of class
constructors and destructors, with the former initializing all the objects needed for
the test and the latter de-initializing them.

The tests themselves are defined as public methods of the class, and use various
test assertion methods to verify if the class does in fact work as advertised. Thus, for
example, the testRemove() method tests the shoppingList() class’ remove()
method by first adding various items to the shopping list, and then removing one of
them and checking what the list actually contains ($actual) against what it should
contain ($expected). This check is performed via a call to the assertEquals()
test assertion method, which essentially checks that the two arguments passed to it
are, in fact, equal and returns a test failure notice if they are not.

Once the test fixture is defined, it may be run through PHPUnit’s command-
line test runner. This test runner accepts, as command-line arguments, the name of
the test class and the location of the file containing its definition; it then runs the
various test cases defined within it, and returns a message indicating the number of
successful and failed tests. The previous listing illustrates the output of a successful
test run; the following one illustrates what happens when one or more tests fail:

shell> ./phpunit.php shoppingListTest shoppingListTest.php

PHPUnit 3.0.0 by Sebastian Bergmann.

.FF..

Time: 00:00

There were 2 failures:

1) testRemovingItem(shoppingListTest)

Failed asserting that

Array

 5 2 0 P H P P r o g r a m m i n g S o l u t i o n s

(

 [milk] => 2

 [eggs] => 6

)

 is equal to

Array

(

 [eggs] => 6

)

2) testAddingRemovingItem(shoppingListTest)

Failed asserting that

Array

(

 [milk] => 2

 [soap] => 3

 [spoons] => 24

 [eggs] => 7

)

 is equal to

Array

(

 [eggs] => 7

 [milk] => 2

 [soap] => 3

)

FAILURES!

Tests: 5, Failures: 2.

As this output illustrates, test failures are marked with an "F" in the immediate
output returned by the test runner, and PHPUnit also generates detailed information
on which assertion failed, providing ready clues as to which of the original class’
methods are broken (in this case, the remove() method).

TIP

PHPUnit also supports various test extensions, such as testing for returned exceptions
or output generated by echo and print. This listing illustrates one such extension in the
testException() method, which checks to see if a custom KeyException is
generated when an attempt is made to remove a nonexistent item from the shopping list.

 C h a p t e r 1 2 : W o r k i n g w i t h E x c e p t i o n s a n d O t h e r M i s c e l l a n e a 5 2 1

You can obtain detailed information on these test extensions, and PHPUnit in
general, from the PHPUnit Pocket Guide, a free book written by the author of
the PHPUnit framework, Sebastian Bergmann. Read it online at http://www
.phpunit.de/pocket_guide/.

NOTE

TDD is a development technique from so-called “extreme programming” methodology. It consists
of first defining a test case for a new software feature and then implementing the feature by only
writing the code necessary to pass the test. Proponents claim that this approach results in higher
software quality and less code bloat.

This page intentionally left blank

523

Index

A
-a command-line argument, 514–515
Absolute file paths:

converting, 229–230
for PDF creation, 460
relative file paths and, 188, 229–230

Abstract classes, 174, 175
Abstract methods, 175
Abstraction layers, 382–385

of ADOdb, 384–385
functions vs., 385
of PHP Data Objects, 386

ACID-compliant transactions, 397
activateUrls() function, 237
Active mount points, 224–225
Add() method:

arithmetic with, 68
creating ZIP archives, 472
debugging with, 504
for overloading class methods, 178
for working with complex numbers, 71

AddAction() method, 335
AddCol() method, 241–242
AddElement() method:

for drop-down lists, 298
for form generations, 293
for HTML tag clouds, 289

AddFile() method, 471
AddHTMLImage() method, 462
AddMail To() method, 239
AddPage() method, 334
AddPostData() object method, 344
Address harvesters, 238, 239

AddRow() method, 241–242
AddRule() method, 304
addslashes() function, 389, 390
AddSpan() method, 96–97
ADOConnection class, 384
ADOdb:

caching query results with, 405–407
Database Abstraction Library, 384–385

ADORecordset class, 384
After() method, 95
Algorithms:

Blowfish, 31
custom, 124–125
encryption, 31
Luhn, 309–310
natural-language, 122

Alphabetic strings, 306–307
Alphabetical order, 122
Alphanumeric, 33
Alphanumeric strings, 307–308
Amazon E-Commerce Service

(ECS), 440–444
Amazon.com, 440–444
American Standard Code for Information

Interchange (see ASCII)
AnalyzeFile() method, 424
AnalyzeString() method, 424
Anchors (HTML), 237–238
“And,” joining with, 108
Antecedents of classes, 163–164
AppendChild() method:

for creating XML, 419
for XML data exportation, 430
for XML nodes, 419–421

 5 2 4 P H P P r o g r a m m i n g S o l u t i o n s

Archive_Tar class (PEAR), 472–474
Archive_Zip package (PEAR), 471–472
Arguments:

-a command-line, 514–515
for cookies, 362
input, 141–143
output, 141–143
variable-length, 138–140
(See also Function arguments)

Array(s), 101–130
adding elements to, 110–111
associative (see Associative arrays)
comparison of, 128–130
contiguous segments of, 111–112
converting strings to, 107–108
counting elements in, 106–107
delimiters in, 108
duplicate elements of, 112–113
extracting contiguous segments

of, 111–112
files and, 188–190, 201, 215–216
filtering, 120–121
flipping elements of, 109
functions and, 140
“gaps” in, 113–114
in HTML, 243–245
keys of, 108–109
listing elements of, 113
loops for, 103–104, 108
merging, 127–128
middle of, 110, 111
multidimensional, 117, 123–124
nested (see Nested arrays)
with nonsequential numbers, 114
numerically indexed, 109–111,

116, 121–122
printing, 102–103
processing, 103–106
randomizing, 114–115
recursive functions for, 105
re-indexing, 113–114
removing elements from, 110–113
reversing elements of, 109

reversing order in, 115
scalar values in, 106
searching, 116–120
shuffling, 114–115
sorting, 121–127
splicing, 111
string-indexed, 122
strings converted to, 107–108
subsections of, 112
swapping keys and values of, 108–109
temporary variables in, 103–104
values of, 108–109

array_combine() function, 128
array_diff_assoc() function, 130
array_difference() function, 129–130
array_filter() function, 120–121
array_flip() function, 108–109
array_intersect() function, 128–130
array_intersect_assoc() function, 130
ArrayIterator objects, 104
array_key_exists() function, 116–117
array_merge() function, 127–128
array_merge_recursive()

function, 127–128
array_multisort() function,

123–124, 215–216
array_pop() function, 109–111
array_push() function, 109–111
array_rand() function, 114–115, 243
array_reverse() function, 109, 115
arraySearch() function, 117
arraySearchRecursive()

function, 118–120
array_shift() function, 109–111
array_slice() function, 111
array_splice() function, 111
arrayTraverse() function:

for hierarchical lists, 245
for nested arrays, 105–106

array_unshift() function, 109–111
array_values() function, 113–114
arsort() function, 123

 I n d e x 5 2 5

ASCII (American Standard Code for
Information Interchange):

for bytecoded file, 508–509
“clean,” 284–285
converting strings to, 9–10
format conversion from, 457–468
list of, 10
Web pages from, 282–284

asort() function, 122
Assertion methods, 518
Assign() method, 267–268
Associative arrays:

for cookies, 361–362
creating, 128
keys of, 108–109
merging, 128
processing, 104
re-indexing, 114
reversing elements of, 116
shopping carts as, 355
sorting, 122
swapping in, 108–109
URL paths from, 365–366
from URLs, 365–366
values of, 108–109

AsXML() method, 414
@ operator, 489–490
Attachments, e-mail, 464–465
Attribute values:

in DOM, 414
modifying, 414
retrieving, 410–413
SimpleXML and, 410–414
in XML, 410–414

Attributes() method, 412–413
Authentication, 356–360
autoload() function, 164–165
Automated Web page monitoring, 477–479
Automatic documentation of classes,

182–183
Automatic execution of classes, 149–152
Available drives, 224–225

B
Back-references:

for pattern replacements, 23
for URLs, 237

Backslashes, 388–390
Bambalam PHP EXE Compiler/Embedder,

510–511
base-convert() function, 45–46
basename() function, 231
Bases, 44–46
bcompiler_write_file() function, 507
bcompiler_write_footer()

function, 507
bcompiler_write_header()

function, 507
Before() method, 95
BeginTransaction() method, 396
Benchmark class (PEAR), 500–502,

505–507
Benchmarking, 505–507
Bergmann, Sebastian, 521
Binary data:

retrieving, 404–405
storing, 400–404

Binary files:
copying, 210
uploading, 402

Binary Large Object (BLOB), 402
bindec() function, 45–46
BindParam() method, 393
BLOB (Binary Large Object), 402
Blogs, 444–446
Blowfish algorithms, 31
Boundary lines, 7
Browsers:

detection, 276–278
information on, 276–278
interactive, 225
redirection of, 279

Build() method, 98–99
BuildAll() method, 289
Bulk e-mail, 461

 5 2 6 P H P P r o g r a m m i n g S o l u t i o n s

“By reference” passing, 141–142
“By value” passing, 142
Byte(s):

converting, 227
usage of, 227

Byte ranges, 193–194
Bytecode, 507–509
BZIP compression, 473

C
Cache:

resetting, 188
using, 269–272
of Web page output, 268–272

Cache class (PEAR), 269–272
Cache() objects, 269–270
CacheExecute(), 407
CacheFlush() method, 407
Cachegrind files, 498
CalcFull() method, 56–58
Calendars, 97–99
Calender_Month_Weekdays()

class, 98–99
_call() method:

for “catch-all” class methods, 179–181
for overloading class methods, 175–178

Capitalization (see Case)
CAPTCHA (Completely Automated Public

Turing test to tell Computers and Humans
Apart), 335–338

Cascading menus:
in MySQL, 262–264
on Web pages, 258–264

Cascading Style Sheets (CSS), 288
Case, in strings, 2–3
Case-sensitive matching, 20
Catch blocks, 484–486
“Catch-all” method, 178–181
CDATA blocks, 419, 423
ceil() function, 85–86
CFB mode, 31

CGI (Common Gateway Interface)
support, 344

ChangeDay(), 142
ChangePassword(), 486
Characters:

ASCII, 9–10
converting, 9–10
counting, 194–195
in databases, 388–390
at end of string, 4–5
in files, 194–195
placeholders for, 8–9
special, 388–390
validity of, 3–4

checkdate() function:
for date validity, 77–78
for leap years, 81

checkdnsrr() function, 452
Checksums:

generating, 27
for Web page monitoring, 477–479

Child classes, 155
children() function, 416
Children() method:

for filtering XML namespace nodes,
424–425

for retrieving node/attribute values, 412
chr() function:

for alphabet, 10
for ASCII codes, 9, 10

“Chunks”:
files in, 189–190
fixed-length, 10–11

Cipher modes, 31
Class(es), 147–183

abstract, 174, 175
ADOConnection class, 384
ADORecordset class, 384
antecedents of, 163–164
automatic documentation of, 182–183
automatic execution of, 149–152
checking for definition of, 155–158
child, 155

 I n d e x 5 2 7

comparison of, 166–167
custom definition of, 147–149
deinitialization of, 149–152
derived, 153–155
deriving, 153–155
documentation of, 182–183
dynamic loading of, 164–166
executing, 149–152
from existing classes, 153–155
extensibility, 173–175
Generic classes, 155
information on, 158–162
inheritance, 173
initialization of, 149–152
loading, on demand, 164–166
namespaces for, 165
objects and, 148
parent, 155
Server classes, 155
statically accessible members, 170–171
storage of, 165
visibility and, 148, 152, 172–173
(See also specific types, e.g.:

Benchmark class)
Class constructors (see Constructors)
Class destructors (see Destructors)
Class instances (see Instances)
Class methods, 148

“catch-all,” 178–181
checking for definition of, 155–158
for derived classes, 153–155
information on, 158–162
overloading, 175–179
statically-accessible, 170–171
visibility and, 172–173

Class properties, 148
for derived classes, 153–155
statically-accessible, 170–171
visibility and, 172–173

class_exists() function, 156–157
clearstatcache() function, 188
Client-side cookies, 361–362
Client-side JavaScript, 239

Client-side validation, 302
_clone() method, 168–169
Cloning, 167–169
Close() method:

creating ZIP archives and, 471
for database-independent code, 384

CollapseEmptyTags() method, 422
Colons, 108
Comma delimiters, 41–42, 108
Comma-separated (CSV) data:

files, 465–466
lists, 12–13

Comments, in DOM, 419
Commit() method, 395
Common Gateway Interface (CGI)

support, 344
Compare() method:

for dates, 94
for fractions, 68

Comparisons, 166–167
of arrays, 128–130
of classes, 166–167
of clones, 169
of dates, 93–95
between files, 221–222
of objects, 166–167
of pronunciation, 12
of sound, 11–12
in strings, 11–12
value, 39

Compatibility checking, 497–498
Completely Automated Public Turing test to

tell Computers and Humans Apart
(CAPTCHA), 335–338

Complex numbers, 68–71
Compressed archives:

BZIP compression, 473
GZIP compression, 473
TAR, 472–474
ZIP, 470–472

Compressing, space, 5–6, 19, 195
Conjugate() method, 71

 5 2 8 P H P P r o g r a m m i n g S o l u t i o n s

Connect() method:
for database-independent code, 384
for POP3 maiboxes, 459

_construct() function, 150, 152
Constructors, 149–152, 155
Contiguous segments, 111–112
convertFile() function, 468
ConvertTZ() method, 88–90
Cookies, 361–364

arguments for, 362
associative arrays for, 361–362
client-side, 361–362
deleting, 362–363
in forms, 328
headers for, 363–364
protocol restrictions on, 363–364
retrieving, 361–362
sessions in, 350
storing, 361–362
support for, 328

copy() function:
for copying files, 208–209
for renaming files/directories, 214

Copying:
binary files, 210
directories, 210–211
files, 208–210
instances, 167–169
non-binary files, 210
with recursive functions, 210–211
remote files, 209–210

copyRecursive() function, 211
count() function, 107
CountAttribute() method, 424
CountDataChunks() method, 424
Counting:

altered records, 387–388
array elements, 106–107
characters in files, 194–195
in files, 194–195
lines in files, 194–195
patterns, 14–15, 21
words, 14–15

CountTag() method, 424
Create() method:

for pronounceable passwords, 32
for TAR archives, 473
for unpronounceable passwords, 33
for ZIP archives, 472

CreateCDATASection() method, 419
CreateComment() method, 419
CreateElement() method:

for creating XML, 419
for XML data exportation, 430

CreateItem() method, 420
CreateProcessingInstruction()

method, 419
CreateTextNode() method:

for creating XML, 419
for XML data exportation, 430

Credit card numbers, 308–310
crypt() function, 28–29
CSS (Cascading Style Sheets), 288
CSV data (see Comma-separated data)
ctype_alnum() function, 308
ctype_alpha() function, 306
ctype_digit() function, 306
Currency values, 42–43
Current date and time, 74–75
Current() method, 104
Custom exception handlers, 486–489
Custom exceptions, 484–486
Custom session handlers, 346, 351

D
Data Source Name (DSN), 382
Database(s), 367–407

ADOdb Database Abstraction Library
and, 384–385

counting altered records in, 387–388
differences in using, 383
independent code, 382–385
last-inserted record ID in, 385–387
limiting query results, 390–392
Microsoft SQL Server, 379–381

 I n d e x 5 2 9

MySQL, 269–372
ODBC, 381–382
Open Database Connectivity, 381–382
Oracle, 378–379
PDO and, 383–384
PHP Data Objects and, 383–384
portable code for, 382–385
PostgreSQL, 372–373
prepared statements in, 392–395
protecting data in, 388–390
quotes in, 388–390
relational, 382–385, 391
sessions in, 346–351
SimpleXML, 431–432
slashes in, 388–390
special characters in, 388–390
SQLite, 374–376
switching between, 383
Sybase, 376–378
transactions with, 395–397
XML in, 431–432

Database abstraction layers
(see Abstraction layers)

Date(s):
arithmetic for, 95–97
comparison of, 93–95
of credit card expiration, 308–310
day name for, 84–85
day-in-year number for, 82–83
with extreme values, 99–100
MySQL formats for, 91–93
validity checking, 77–78
week-in-year number for, 82–83
year quarter for, 85–86
(See also Date and time)

Date and time, 73–100
calendars, 97–99
current, 74–75
days, 81–82
days in year, 83–84
formatting, 76–77
leap years, 80–81
months, 81–82, 97–99

weeks in year, 83–84
(See also UNIX timestamps)

date() function, 74
for converting local time to GMT, 87
for day names, 84–85
for day-in-year number, 82–83
for days in a month, 81–82
for days in year, 84
for different time zones, 88–90
for MySQL date formats, 91–93
for PHP date formats, 91–93
for timestamps format, 76–77
for week-in-year number, 82–83
for weeks in year, 84
for year quarter, 85–86

Date() objects:
arithmetic with, 97
for comparing dates, 94, 95
for day-in-year number, 83
for week-in-year number, 83
for year quarter, 85–86

date_default_timezone_set()
function, 74, 90

DateSpan() objects, 96–97
Day(s), 81–82

in months, 81–82
name of, 84–85
in year, 82–84
(See also Date)

Day-in-year number, 82–83
DB class (PEAR), 264
Debugging, 502–505
decbin() function, 45–46
Decimal points, 304–306
decoct() function, 45–46
DecryptString(), 31
Default search paths, 218–219
Deg2rad() function, 46–47
Degrees, 46–47
Deinitialization of classes, 149–152
Delete() method, 472
DeleteMsg() method, 459
deleteRecursive() function, 213

 5 3 0 P H P P r o g r a m m i n g S o l u t i o n s

Deletion:
of cookies, 362–363
of directories, 212–213
errors with, 212
of files, 211–212
of session data, 340–341

Delimiters, 108
in arrays, 108
colons, 108
commas, 41–42
commas as, 108
for numbers, 41–42

Delimiter-separated strings, 108
Derived classes, 153–155
_destruct() function, 150, 152
Destructors, 149–152
dexhec() function, 45–46
DHTML progress bar, 249
Digg, tag clouds in, 287
Directories, 186, 203–208

copying, 210–211
deleting, 212–213
disk usage of, 225–227
empty, 213
files in, 216–217
nested, 205
printing directory trees, 206–208
processing, 203–206
recursive functions for, 146
recursively processing, 204–206
renaming, 214
searching in, 216–218
temporary, 228–229
testing, 186

DirectoryIterator, 203–204
dirname() function, 231
dirTraverse() function, 205–206
Disconnect() method, 459
Disk quota managers, 225
Disk usage, 225–227
disk_free_space() function, 225–227
disk_total_space() function,

225–227

Display() method:
for debugging, 504
for drop-down lists, 299
for forms generation, 293
for report generation, 507

Div() method, 68, 71
DNS queries, 451–452
dns_check_record() function, 452
dns_get_mx() function, 452
dns_get_record() function, 452
Document Object Model (DOM):

adding nodes with, 419–421
appending nodes in, 417–418
attribute values in, 414
comments in, 419
creating XML in, 417–418
exporting data with, 429–432
extensions, 410
modifying values in, 414
nodes in, 414, 417–418
removing nodes with, 419–421
validating XML against DTD, 427
XML and, 417–418, 427

Document Type Definitions (DTDs),
410, 426–427

Documentation, of classes, 182–183
DoGoogleSearch() method, 437, 440
DOM (see Document Object Model)
Domain names (URLs):

extracting, 13–14
ownership information for, 450–451

DOMDocument class, 419
DoReplace() method, 220
Downloads:

over FTP, 456–457
of remote files, 250–252
tracking, 250–252
triggering, 278–279

Drive letters (Windows), 225
Drives, available, 224–225
Drop-down lists, 297–300

dependent, 298–300
primary, 300
secondary, 300

 I n d e x 5 3 1

DSN (Data Source Name), 382
DTDs (see Document Type Definitions)
Dump() method, 504
Duplicates, 112–113

of functions, 133–134
of words, 18–19

Dynamic loading, 164–166

E
E_ALL, 490
EC2 (Elastic Compute Cloud), 444
E-Commerce Service (ECS), 440–444
ECS (Amazon E-Commerce Service),

440–444
ECS subscription key, 444
E_ERROR, 489
Elastic Compute Cloud (EC2), 444
Ellipses, 8
E-mail:

with attachments, 464–465
bulk, 461
errors in, 461
generating, 459–461
headers for, 460
HTML in, 462
MIME, 461–463
Multipurpose Internet Mail Extensions,

461–463
POP3-compliant mailboxes for,

457–459
retrieving, 464–465
sending, 459–461, 464–465

E-mail addresses:
encryption of, 238–240
formatting of, 314–316
in forms, 314–316
harvesters of, 238, 239
protecting, 238–240
public, 238–240
validating, 314–316
on Web pages, 238–240

Embedded data:
in images, 475–477
URLs, 237–238

empty() function, 4
Empty tags, 421–422
Empty values:

in strings, 3–4
in XML, 421–422

Encryption, 28–31
algorithms for, 31
bytecode, 507–509
of e-mail addresses, 238–240
one-way, 28–29
of strings, 28–31
two-way, 29–31
on Web pages, 238–240

EncryptString(), 31
End-of-string characters, 4–5
E_NONE, 489–490
== operators, 166–167
ereg() function, 20
eregi() function, 20
eregi_replace() function, 237
ereg_replace() function:

for counting file lines, words,
characters, 195

preg_replace() function vs., 23
for whitespace compression, 6

Error(s):
with abstract methods, 175
customizing display of, 490–492
with deletion, 212
duplicate functions, 134
in e-mail, 461
fatal, 483, 492
with functions, 134, 145
with Google Web API, 437, 440
handling, 485
“incomplete objects,” 345
logging, 492–494
with methods, 179
with overloading, 179

 5 3 2 P H P P r o g r a m m i n g S o l u t i o n s

Error(s): (Cont.)
parse, 492
PHP_Debug class and, 504
reporting, 483
reporting level of, 489, 490
with SOAP, 437, 440
suppressing, 489–490
undefined functions, 145, 497

Error stack, 302
error_log() function, 486–487, 493
error_reporting() function:

control of, 490
use of, 483

Error-suppression operator, 489–490
escapeshellarg() function, 514
escapeshellcmd() function, 514
E_STRICT, 497–498
Even numbers, 40
EVENT_Dispatcher class (PEAR), 252
Exceptions, 482–488

from code block, 482–484
custom, 484–486
custom handler for, 486–489
error messages and, 483
generation of, 484
handling, 482–484

Exchangeable Image File Format (EXIF)
function, 475–477

Exclusive file locks, 198
exec() function, 513–514

for pinging remote hosts, 448
for random quotes, 242
for tracing network routes, 450

Exec() method, 387
Executables, 319, 509–511
Execute(), 393, 407
EXIF (Exchangeable Image File Format)

function, 475–477
exif_read_data() function, 476
exif_thumbnail() function, 476, 477
exists() function, 133
exp() function, 52

Expiration dates, credit card, 308–310
explode() function:

for arrays from strings conversion,
107–108

for comma-separated lists, 12
for duplicate words, 19
for hours to minutes conversion, 91
for minutes to hours conversion, 91
for strings to array conversion, 107–108
for substring extraction, 25
for URL path variables, 366

Exporting data, to XML, 429–432
Ext/bcompiler extension, 508–509
Extensibility, 155, 173–175
eXtensible Markup Language (see XML)
Extensible Style Language (XSL), 428
extension_loaded() function, 496–497
Extensions:

checking loaded, 496–497
of methods, 174

External processes, 223–224
External programs, 513–514
External variables, 134–136
Ext/mcrypt extension, 29–31
Ext/pspell extension, 16
Extract() method:

for TAR archives, 473
for ZIP archives, 472

Extraction:
of contiguous array segments, 111–112
of sentences, 26–27
of strings, 24–25, 112
of substrings, 24–25

“Extreme programming” methodology, 521

F
Factorials, 50–51
Factory() method, 171
Fatal errors:

display of, 492
reporting, 483
with undefined functions, 145

 I n d e x 5 3 3

Fetch() method:
for monthly calender display, 98–99
for multiple SQL commands, 398

fgetc() function, 193–194
fgetcsv() function, 465, 466
fgets() function:

for comma-separated files, 466
for file line ranges, 191–194
for reading files, 190
for removing file lines, 201–202

Fibonacci numbers, 64–66
File(s), 186–202

absolute paths, 229–230
across networks, 189–190
arrays and, 188–190, 201, 215–216
attributes for, 187–188
byte ranges, 193–194
characters in, counting, 194–195
in “chunks,” 189–190
comparisons between, 221–222
copying, 208–210
counting in, 194–195
in default search path, 218–219
deleting, 211–212
differences between, 221–222
in directories, 216–217
disk usage of, 227
information retrieval for, 187–188
line ranges, 190–193
lines, counting, 194–195
local, 188–190, 403
locking, 197–200
non-binary, 210
overwriting, 201
patterns within, 219–220
reading, 188–190
relative paths, 229–230
remote, 188–190, 209–210
removing lines from, 200–202
renaming, 214
search and replace for, 219–220
searching for, 216–219
into single-string variables, 189

sorting, 214–216
into strings, 188–190
“tail,” 223–224
temporary, 227–228
testing, 186
unlocking, 197–200
words in, counting, 194–195
writing strings to, 196–197

File browsers, interactive, 225
file() function:

for counting file lines, words,
characters, 195

for differences between files, 222
for file line ranges, 190–192
for monitoring Web pages, 479
for reading files, 188–189
for removing file lines, 201

File locks, exclusive, 198
File paths, 229–231 (See also specific types,

e.g.: Absolute file paths)
File Transfer Protocol (FTP), 456–457
File uploads, Web-based, 403
file_exists() function:

for copying files, 209
for testing files/directories, 186

file_get_contents() function:
for ASCII format conversion,

284–285, 468
for binary data, 402
for counting file lines, words,

characters, 194–195
for HTML markup, 284–285
for reading files, 188–189, 280
for remote files, 209–210, 280
for retrieving binary data, 402
for storing binary data, 402

file_put_contents() function:
for ASCII format conversion, 468
for attribute values, 414
for binary data, 402
copying with, 209–210
for file lines, 201
for node values, 414

 5 3 4 P H P P r o g r a m m i n g S o l u t i o n s

file_put_contents() function: (Cont.)
for remote files, 209–210
for retrieving binary data, 402
for storing binary data, 402
for writing files, 196

File_SearchReplace class (PEAR), 220
filesize() function, 187–188
filetype() function, 187–188
File_uploads variable, 319
File_Util class (PEAR), 229
Filtering:

arrays, 120–121
nodes, 424–426

Fixed-length “chunks,” 10–11
Flags, 227, 228
Flickr, tag clouds in, 287
Floating point numbers, 37–38
flock() function:

for locking files, 198–200
in other programs, 198
support for, 200
for unlocking files, 198–200
in Windows, 199
for writing files, 197

Footer templates, 246–247
Fopen() function:

for progress bars, 252
for reading files, 189
for writing files, 197

For() loops:
for factorials, 50–51
in MySQL, 370
for URL paths, 366
for variable-length argument lists, 139

Foreach() loops:
for array processing, 12
for attribute values, 411
for converting strings to arrays, 108
for default search path file

searches, 219
for directories, 205
for drop-down lists, 297, 298

for filtering XML namespace
nodes, 425

for HTML tag clouds, 288
for nested arrays, 106, 119–120
for node values, 411
for printing instance properties,

162–163
to process arrays, 103–104
for recursively processing

directories, 205
for searching, 119–120
for XML, 417, 425

Forking, 223–224
Form(s) (HTML), 292–297

across multiple pages, 325–335
alphabetic strings in, 306–307
alphanumeric strings in, 307–308
CAPTCHA and, 335–338
character validity in, 3–4
cookie support in, 328
credit card numbers in, 308–310
decimal points in, 304–306
drop-down lists in, 297–300
e-mail addresses in, 314–316
error stack for, 302
file upload support in, 403
generating, 292–294
hidden data in, 325–327, 355
international telephone numbers

in, 310–312
log-in, 359
negative signs in, 304–306
numbers in, 304–306
option element in, 297–298
POST, 317–320, 344
postal codes in, 313–314
postback and, 297
preserving input, 325–335
processing input from, 294–295
protecting submissions, 335–338
result page for, 295–297
social security numbers in, 312–313
submit element, 296–297

 I n d e x 5 3 5

telephone numbers in, 310–312
uploading files with, 317–325
URLs in, 316–317
validating input of, 3–4, 295, 300–317

Form-based file uploads, 403
Fortune program (UNIX), 242–243
Fractions, 66–68
fread() function:

for progress bars, 252
for reading files, 189

Frequency, 422–424
fROM_UNIXTIME() function, 92–93
fseek() function:

for file byte ranges, 193
for file line ranges, 191–193

ftell() function, 193
FTP (File Transfer Protocol), 456–457
Ftp_close(), 457
ftp_connect() function, 457
Ftp_delete(), 457
Ftp_disconnect(), 457
Ftp_get(), 457
ftp_login() function, 457
Ftp_nlist(), 457
Ftp_put(), 457
func_get_args() function, 138–139
Function(s), 131–146

arrays and, 140
custom definition of, 132–133
database abstraction layer vs., 385
defining, 132–133, 144–145
duplication of, 133–134
dynamic definition of, 144–145
errors with, 134, 145
external variables within, 134–136
global variables in, 135, 143
input arguments, 141–143
invoking, 132–133
multiple values from, 140
naming, 132–133
nested, 144–145
output arguments, 141–143
recursive (see Recursive functions)

superglobals in, 136
undefined, 145, 497
variable functions, 144
variables in, 134–136, 143
(See also specific types, e.g.:
explode() functions)

Function arguments, 137–140
default values for, 137
defined, 133
mandatory, 137
optional, 137
prefix for, 141
by reference, 141–142
by value, 142
variable-length, 138–140
variable-length lists of, 138–140

Function invocations, 143–144
Function keywords, 133
function_exists() function, 133–134
Future values, 54–55
fwrite() function:

for file line removal, 201–202
for writing files, 196–197

G
“Gaps,” 113–114
Generic classes, 155
Geographic location, IP-based, 453–455
Get (Property)() method, 180–181
GET arguments, 13
Get() method:

for caching script output, 269–270
for MIME e-mail, 462
for MIME e-mail with attachments, 465
overloading with, 181

GET query string, 364–365
GetAge() method, 180
GetBody() method, 459
get_browser() function, 276–277
getBytes() function, 194
GetCAPTCHAAsJPEG() method, 337
getCircleArea() function, 133

 5 3 6 P H P P r o g r a m m i n g S o l u t i o n s

Get_class() method:
for Amazon E-Commerce Service, 444
for class members, 158–160
for Google web APIs, 440

Get_class_method() method, 158–160
Get_class_vars() method, 158–160
GetCode() method, 484
GetConfig() method, 149
GetConstants() method, 161
getdate() function, 74–75
GetDaysInMonth() method, 82
GetFile() method, 484
GetFilename() method, 204
gethostbyaddr() function, 452, 454
gethostbyname() function, 452, 454
GetLine() method, 484
getLines() function:

for file byte ranges, 194
for file line ranges, 192

GetLinks() method, 275
getLocalTime() function, 88–90
GetMessage() method, 484
GetMethods() method, 161
GetMsg() method, 459
getmxrr() function, 452
GetNumOccurences() method, 220
Get_object_vars() method, 158–160
GetPageDate() method, 275
Get_parent_class() method, 158–160
GetParsedHeaders() method, 459
GetPhrase() method, 337
GetProperties() method, 161
getQuarterOfYear() function, 86
getrandmax() function, 60–61
GetRawData() method, 448
GetResponseBody() method, 344
GetScript() method, 249
GetSize() method, 459
GetStyle() method, 249
Gettext(), 511–512
GetTitle() method, 345

GetTraceAsString() method, 484
GetWeekOfYear() method, 83
Gigabyte values, 227
glob() function, 221
Global variables, 135, 143
gmdate() function, 74, 86–87
GMT (see Greenwich Mean Time)
GNOME XML library, 410
Google:

license keys for, 440
searching, 436–438

Google Web API:
errors with, 437, 440
PEAR SOAP class for, 438–439
SOAP for, 436–438
XML in, 434–440

Greenwich Mean Time (GMT), 86–87
GZIP compression, 473

H
Hash signatures, 27
header() function:

download triggering and, 279
protocol restrictions and, 364
redirecting browsers and, 279

Headers:
for cookies, 363–364
for e-mail, 460
in Microsoft Internet Explorer, 279
for sessions, 363–364
templates for, 246–247
for Web pages, 246–247

Headers() method, 462, 465
Heirselect (HTML_QuickForm), 300
Hex editors, 508, 509
hexdec() function, 45–46
Hidden data, in forms, 325–327, 355
highlight_file() function, 235
Highlighting syntax, 235
highlight_string() function, 235
Hours, 90–91

 I n d e x 5 3 7

HTML (HyperText Markup Language), 292
in e-mail, 462
form (see Form)
img tag, 338
lists, 243–245
tables, 240–242
tag clouds, 285–289

HTML documents (see Web pages)
HTML_Common class (PEAR), 241–242
HTML_Crypt class (PEAR), 239
HTML_Crypt() objects, 239
htmlentities() function, 283
html_entity_decode() function, 284
HTML_Progress2 class (PEAR), 247–252,

321–322
HTML_QuickForm class (PEAR):

for dependent drop-down lists, 299–300
for drop-down lists, 297, 299–300
heirselect, 300
manual for, 304
for result pages, 297
for upload functions, 320–321
for validating forms, 302–304

HTML_QuickForm_Controller package
(PEAR), 331–335

HTML_Table class (PEAR), 240–242
HTML_TagCloud class (PEAR), 289
HTML_TreeMenu class (PEAR), 253–258
HTML_TreeMenu DHTML() objects,

255, 258
HTML_TreeMenu() objects, 255
HTML_TreeNode() objects, 255
HTTP clients:

redirection of, 279
writing to, 234

HTTP headers, 363–364
http_build_query() function, 364–365
HTTP_Request class (PEAR), 252, 280–281
Hyperlinks:

for file retrieval, 405
from text URLs, 237–238

HyperText Markup Language (see HTML)

I
IANA (Internet Assigned Numbers

Authority), 454
Identifiers, 59–60
ifx_affected_rows() function, 387
imagecopyresampled() function, 475
imagecreatefromjpeg() function, 475
imagejpeg() function, 475
Images:

embedded data in, 475–477
HTML tag for, 338
metadata for, 475–477
resizing, 474–475

Img tag (HTML), 338
implode() function:

for comma-separated lists, 13
for converting strings to arrays,

107–108
for defining custom functions, 133

importPrevPageData() function,
328, 331

ImportStyleSheet() method, 429
Improved MySQL (see MySQLi)
in_array() function, 116–117
@INC variable (Perl), 219
Include():

for footer templates, 247
for header templates, 247
for loading class definitions on

demand, 165
for templates, 247

Include_path(), 218–219
“Incomplete objects,” 345
Inheritance, 155, 173
ini_get() function:

for default search path file
searches, 219

for run-time configuration, 496
ini_set() function, 496
Initialization vector (IV), 31
Inode numbers, 188
Input arguments, 141–143

 5 3 8 P H P P r o g r a m m i n g S o l u t i o n s

Insert_ID() method, 385
Instanceof operators, 163–164
Instances, 160, 162–163

cloning, 167–169
copying, 167–169
information on, 160
object, 167–169
printing properties of, 162–163
of variables, 167
variables referring to, 167
visibility and, 172–173

Interactive file browsers, 225
Interactive shells, 514–515
Interactive Web applications, 225
International Standard Book Number

(ISBN), 442
International telephone numbers, 310–312
Internationalizing strings, 512
Internet Assigned Numbers Authority

(IANA), 454
Internet Explorer (Microsoft), 279
Interoperability checking, 497–498
Interpolation, variable, 267
Inverse() method, 71
Invert() method, 177
Invocation, function, 143–144
IP addresses:

geographic location and, 453–455
mapping to, 452–453

ISBN (International Standard Book
Number), 442

is_callable() function, 156–157
is_dir() function, 224–225
IsDot() method, 204
IsEmpty() method, 98–99
is_executable() function, 188
IsFibonacci() method, 66
IsFirst() method, 98–99
is_float() function, 305
IsFuture() method, 95
is_int() function, 305
IsLast() method, 98–99
is_numeric() function, 305

IsPast() method, 95
isPositive() function, 121
is_readable() function, 188
IsSelected() method, 98–99
isset() function, 3–4
is_string() function, 306

for alphabetic strings, 306
for alphanumeric strings, 308

is_subclass_of() function, 163–164
is_uploaded_file() function, 319
IsValid method, 78
is_writable() function, 188
ItemLookup() method, 442, 444
Iterators, 104, 106

ArrayIterator, 104
defined, 104, 203, 206
DirectoryIterator, 203–204
for looping, 206
RecursiveArrayIterators, 106, 119, 120
RecursiveIteratorIterator, 106, 119, 120
SimpleXMLIterator, 416–417
in SPL, 104, 106, 203, 206, 416

IV (initialization vector), 31

J
Java Server Pages (JSP), 342–344
JavaScript:

client-side, 239
for e-mail protection, 239
for validation, 302

JPEG files, 476, 477
JSP (Java Server Pages), 342–344

K
KCachegrind, 498
Key(s) (arrays), 108–109

in associative arrays, 108–109
multiple, 123–124
searching, 116
sorting with, 123–124
swapping, 108–109

Key() method, 104

 I n d e x 5 3 9

Keywords, static, 171
krsort() function, 123
ksort() function, 122

L
Language, local, 511–513
LastInsertID() method, 385
LayersMenu() objects, 260–261
Leading zeros, 43–44
Leap years, 80–81
LenException() class, 486
levenshtein() function, 12
ListContent() method:

for TAR archives, 473
for ZIP archives, 472

Lister, Aiden, 235
Lists:

of array elements, 113
comma-separated, 12–13
delimiter-separated, 108
dependent drop-down, 298–300
drop-down, 297–300
in HTML, 243–245
splitting, 108
variable-length, 138–140
on Web pages, 243–245

Loaded extensions, 496–497
Local copies, 210
Local files, 188–190, 403
Local time, 86–87
Local variables, 135
Localizing strings, 511–513
Lock() method, 152
Locking, 197–200
log() function, 51–52
Log() method, 494
Log package (PEAR), 493–494
log10() function, 51–52
Logarithms, 51–52
Logging, of errors, 492–494
Log-in forms, 359
Login() method, 459

LookupCountryCode() method, 454
LookupCountryName() method, 454
Loops:

for arrays, 103–104, 108
for instance properties, 162–163
Iterators for, 206
for printing, 162–163
for searching nested arrays, 119–120
for task status displays, 249
for variable-length arguments, 139–140

Lower-case, 2–3
Luhn algorithm, 309–310

M
Mail class (PEAR), 462
Mail exchanger (MX), 452
mail() function, 459, 460–461
Mail_Mime class (PEAR), 461–465
Mail_Mime() objects, 462, 465
Mandatory arguments, 137
Mapping to IP addresses, 452–453
Matches:

case-sensitive, 20
in nested arrays, 119
with Perl, 220
searching, 119
in Web pages, 282
(See also Patterns)

max() function, 288
Max_execution_time variable, 319
Maximum values, 39
Max_input_time variable, 319
MaxMind country database, 453–455
Mcrypt extension, 29–31
mcrypt_decrypt() function, 31
mcrypt_get_iv_size() function, 31
md5() function:

form-uploading and, 322
for generating unique identifiers,

59–60
for hash signatures, 27
monitoring web pages and, 479

 5 4 0 P H P P r o g r a m m i n g S o l u t i o n s

Mechanical Turk, 444
Megabyte values, 227
Menu trees, 253–258
Menus, cascading, 258–264
Merge() method, 472
Metabase, 432
Metadata:

for images, 475–477
in RSS, 434

metaphone() function, 11–12
Method(s):

abstract, 175
checking for definition of, 155–158
class methods (see Class methods)
errors with, 179
extension of, 174
information on, 158–162
for objects, 148
“private,” 173
“public,” 173
virtual, 178–179
(See also specific types, e.g.:
Create() methods)

Method calls (PHP):
forms from, 292–294
tables from, 240–242

method_exists function, 156–157
Microsoft Internet Explorer, 279
Microsoft SQL Server, 379–381

last inserted record ID for, 386
SQL commands in, 379–381

Microsoft Windows OS (see Windows OS)
Microtime() function, 74, 265
MIME (Multipurpose Internet Mail

Extensions), 461–463
min() function, 288
Minimum values, 39
Minutes, 90–91
mkdir() function, 211
mktime() function:

deleting cookies, 363
error detection, 498

for formatting timestamps, 77
for getting current date and time, 75
timestamps, 74

.mo files, 512
money_format() function, 42–43
Monitoring Web pages, 477–479
Months, 81–82, 97–99

calendar for, 97–99
days in, 81–82
days in, finding, 81–82

Mount points, active, 224–225
Mount points (UNIX), 225
Mounted file systems (UNIX), 224–225
MoveStep() method, 249
move_uploaded_file() function, 318
msqli_prepare() function, 394
msqli_stmt_bind_param()

function, 394
msqli_stmt_execute() function, 394
Mssql_close(), 380
mssql_connect() function, 380
mssql_fetch_assoc() function, 380
mssql_fetch_object() function, 380
mssql_fetch_row() function, 380
mssql_get_last_message(), 380–381
mssql_num_rows() function, 380
mssql_query() function, 380
mssql_result() function, 380
mssql_rows_affected() function,

380–381
mssql_select_db() function, 380
Mult() method, 68, 71
Multidimensional arrays, 117, 123–124

searching, 117
sorting, 123–124
symmetrical, 124

Multipurpose Internet Mail Extensions
(MIME), 461–463

Multistatement queries, 399
MX (mail exchanger), 452
My.Netscape.Com portals, 434

 I n d e x 5 4 1

MySQL, 269–372
authentication with, 357–360
caching query results with, 407
cascading menus in, 262–264
commands, 269–371
compatibility with PHP, 371
counting altered records in, 388
date format of, 91–93
file upload support with, 402–403
last inserted record ID for, 386
limiting query results in, 390–392
menu trees in, 255, 256, 258
prepared statements in, 394
sessions stored in, 346–351
tag clouds in, 287
UNIX timestamps converted to, 91–93

MySQL 4.1, 371
Mysqli(), 371
MySQLi (Improved MySQL), 269–370
mysqli_affected_rows() function:

counting altered records, 388
in MySQL, 370

mysqli_autocommit() function, 396
Mysqli_close(), 370
mysqli_commit() function, 396–397
Mysqli_connect(), 370
Mysqli_error(), 370
mysqli_fetch_array() function, 370
mysqli_fetch_assoc() function, 370
mysqli_fetch_object function, 370
mysqli_fetch_row() function, 370
mysqli_multi_query() function, 399
mysqli_num_rows() function, 370
Mysqli() object method, 370
mysqli_query() function, 370
mysqli_rollback() function, 397
mysqli_store_result() function, 399
mysqlli_insert_id() function, 385

N
N12br() function, 283
NameException() class, 486

Namespaces:
for classes, 165
SimpleXML and, 424–426
Universal Resource Identifier, 424
URI, 424
XML and, 424–426

natsort() function, 122–123
Natural-language algorithms, 122
Negative signs, in forms, 304–306
Nested arrays:

as HTML list, 243–245
matches in, 119
processing, 104–106
scalar values in, 245
searching, 118–120
sorting, 125–127

Nested directories, 205
Nested functions, 144–145
Nested queries (subqueries), 398
Net_DNS class (PEAR), 451–453
NetGeo, 454
Net_Geo class (PEAR), 455
Net_GeoIP class (PEAR), 453–455
Net_Ping class (PEAR), 449
Net_POP3 class (PEAR), 457–459
Net_Traceroute class (PEAR), 450
Net_Whois class (PEAR), 450–451
Network(s):

reading files over, 189–190
tracing route of, 449–450

Network hosts, 448–449
Next() method, 104
Nodes:

adding, 419–421
appending, 417–418
collapsing, 253–258
DOM and, 414, 417–421
filtering, 424–426
modifying value of, 414
removing, 419–421
retrieving value of, 410–413
in SimpleXML, 410–414, 419

 5 4 2 P H P P r o g r a m m i n g S o l u t i o n s

Non-binary files, 210
Nonsequential numbers, 114
number_format() function, 41–42
Numbers, 35–71

base conversion, 44–46
commas for, 41–42
complex, 68–71
conversion of, 44–50
credit card, 308–310
as currency values, 42–43
degrees, 46–47
even, 40
factorials, 50–51
Fibonacci, 64–66
floating point, 37–38
formatting, 41–43
in forms, 304–306
fractions, 66–68
future value, 54–55
identifiers, 59–60
inode, 188
logarithms, 51–52
maximum values, 39
minimum values, 39
nonsequential, 114
odd, 40
postal codes, 313–314
prime, 61–64
radians, 46–47
random, 60–61
range of, 36–37
roman numerals, 48–50
rounding, 37–38
social security, 312–313
statistical values, 55–59
telephone, 310–312
trigonometric values, 52–54
unique identifiers, 59–60
in unordered series, 39
validating, 304–306, 308–314
value comparisons, 39

words and, 47–48
with zeros, 43–44

Numeric, 33
Numerically indexed arrays:

adding elements to, 109–111
in alphabetical order, 122
randomizing, 116
removing elements from, 109–111
reversing elements of, 116
sorting, 121–122

Numerically indexed strings, 107–108
NumMsg() method, 459

O
ob_end_flush() function:

caching script output, 272
protocol restrictions and, 364

ob_get_contents() function, 272
Objects:

classes and, 148
comparing, 166–167
defined, 148
instances of, 167–169
methods for, 148
properties of, 148
visibility and, 173

OCI (Oracle Call Interface), 379
Oci_close(), 379
oci_connect() function, 379
oci_error(), 379
oci_execute() function, 379
oci_fetch_all() function, 379
oci_fetch_assoc() function, 379
oci_fetch_object() function, 379
oci_fetch_row() function, 379
oci_parse() function, 379
oci_result() function, 379
octdec() function, 45–46
ODBC (Open Database Connectivity),

381–382
odbc_close() function, 382

 I n d e x 5 4 3

odbc_connect() function, 382
odbc_errormsg() function, 382
odbc_exec() function, 382
odbc_fetch_array() function, 382
odbc_fetch_object() function, 382
odbc_fetch_row() function, 382
odbc_num_rows() function, 382
odbc_result() function, 382
Odd numbers, 40
160-bit hash, 27
128-bit hash, 27
One-way encryption, 28–29
Open Database Connectivity (ODBC),

381–382
Open() method, 471
Option element (HTML forms), 297–298
Optional arguments, 137
Oracle, 378–379
Oracle Call Interface (OCI), 379
Ord() function, 9–10
Ø (HTML), 7
Output arguments, 141–143
Output() method, 239
Overloading, 175–179

class methods, 175–179
errors with, 179
with _get() methods, 181
with _set() methods, 181
true, 178

Overwriting files, 201

P
Package/Services_Trackback, 445
Pager class (PEAR), 272–275
Pagination, Web page, 272–275
Paragraphs, extraction from, 26–27
Parent classes, 155
Parse errors, 492
ParseStructureForMenu() method, 261
parse_url() function, 13

Parsing:
file paths, 230–231
strings, 12–14
URLs, 13–14
XML, 410, 431–432

Partitions, disk usage of, 225–227
passthru() function, 514
Passwords, 31–34

authentication with, 356–360
pronounceable, 31–32
for sessions, 356–360
unpronounceable, 32–34

Pathinfo() function, 230–231
Patterns, 21

counting, 14–15, 21
in files, 219–220
within files, 219–220
replacing, 22–24, 219–220
searching for, 219–220
in strings, 21–24
in substrings, 22–24
words as, 14–15

Payment_Process class (PEAR), 309–310
PDF (Portable Document Format) files,

468–470
pdf_begin_page() function, 469
pdf_close() function, 469
pdf_end _page() function, 469
pdf_findfont_page() function, 469
pdf_get_buffer() function, 469
pdf_new() function, 469
pdf_open_file() function, 469
pdf_open_image_file() function, 469
pdf_place_image() function, 469
pdf_setfont_page() function, 469
Pdf_show_xy() objects, 469
PDO (see PHP Data Objects)
PEAR (PHP Extension and Application

Repository):
Archive_Tar class, 472–474
Archive_Zip package, 471–472

 5 4 4 P H P P r o g r a m m i n g S o l u t i o n s

PEAR (PHP Extension and Application
Repository): (Cont.)

Benchmark class, 500–502, 505–507
Cache class, 269–272
DB class, 264
EVENT_Dispatcher class, 252
File_SearchReplace class, 220
File_Util class, 229
HTML_Common class, 241–242
HTML_Crypt class, 239
HTML_Progress2 class, 247–252,

321–322
HTML_QuickForm class (see HTML_

QuickForm class)
HTML_QuickForm_Controller

package, 331–335
HTML_Table class, 240–242
HTML_TagCloud class, 289
HTML_TreeMenu class, 253–258
HTTP_Request class, 252, 280–281
Log package, 493–494
Mail class, 462
Mail_Mime class, 461–465
Net_DNS class, 451–453
Net_Geo class, 455
Net_GeoIP class, 453–455
Net_Ping class, 449
Net_POP3 class, 457–459
Net_Traceroute class, 450
Net_Whois class, 450–451
Pager class, 272–275
Payment_Process class, 309–310
PHP_Shell package, 515
Services_Trackback class, 444–446
SOAP class, 438–439
Text_CAPTCHA package, 337–338
Text_Diff class, 222
Text_Password class, 32
Validate class, 309–310, 315
XML_Statistics class, 422–424
XML_Util class, 421–422

Pereg_match() function, 20

Perform() method, 334
Perl (Practical Extraction and Report

Language):
@INC variable, 219
matching with, 220
preg_match() and, 20
preg_split() and, 14–15
for sharing sessions, 342–344
shell of, 515

Pg_close(), 373
pg_connect() function, 373
pg_fetch_all() function, 373
pg_fetch_assoc() function, 373
pg_fetch_object() function, 373
pg_fetch_result() function, 373
pg_fetch_row() function, 373
pg_last_error(), 373
pg_query() function, 373
PHP 4.x:

array manipulation in, 102
constructors/destructors in, 152
PHP 5.x vs., 152

PHP 5.x:
constructors/destructors in, 152
PHP 4.x vs., 152
ZIP files in, 471

PHP Data Objects (PDO), 383–384
abstraction layer of, 386
counting altered records in, 387
last inserted record ID for, 385–387
multiple commands in, 398
prepared statements with, 392–394
special characters protection in,

388–389
transactions with, 395–396

PHP Extension and Application Repository
(see PEAR)

PHP_Debug class, 502–505
phpDocumentor, 182, 183
PHP_Highlight class, 235
phpinfo(), 494
phpLayersMenu class, 259–264

 I n d e x 5 4 5

PHP_Shell package (PEAR), 515
phpSniff class, 277–278
PHPUnit, 518–521
PHPUnit Pocket Guide, 521
phpversion() function, 494–495
Ping command, 448–449
Pinging network hosts, 448–449
Pinging remote hosts, 448–449
PIs (see Processing Instructions)
Placeholders:

for content on Web pages, 266–268
in prepared statements, 393
replacing characters with, 8–9

“Plug in” data, 434
.po files, 512
POP3-compliant mailboxes, 457–459
Portable Document Format (PDF) files,

468–470
POST, 317–320, 344
Postal codes, 313–314
Postback, 297
PostgreSQL, 372–373

limiting query results, 391–392
SQL commands in, 372–373

Post_max_size variable, 319
Practical Extraction and Report Language

(see Perl)
Pratesi, Marco, 260
preg_match() functions:

for directory file searches, 217
for searching arrays, 117
for searching nested arrays, 119–120
for Social Security numbers, 313

preg_match_all() function:
extracting URLs with, 281, 282
for pattern matching, 21

preg_replace() function:
for ASCII format conversion, 468
for clean ASCII, 285
for complex patterns, 22–23

Preg_split():

for extractnig substrings, 24–25
Perl and, 14–15

for spell-checking, 16
str_word_count() function vs., 15

Prepare() method, 393, 395
Prepared statements, 392–395
Primary drop-down lists, 300
Prime numbers, 61–64
printf() function, 43–44
PrintFooter() method, 261
PrintHeader() method, 261
PrintHistogram() method, 58–59
Printing:

arrays, 102–103
directory trees, 206–208
instance properties, 162–163
loops for, 162–163
recursive functions for, 206–208

printMenu() function, 264
PrintMenu() method:

cascading menus, 261
tree menus, 258

print_r() function:
for arrays, 102–103
processing form input, 295

“Private” method and properties, 173
Processing Instructions (PIs), 419, 423
Programming, extreme, 521
Programs, external, 513–514
Progress bars, 247–252, 321–322
Pronounceable passwords, 31–32
Pronunciation, comparison based on, 12
Protocols (URLs), 13–14
Pspell, 16–18
pspell_check() function, 16–18
pspell_new() function, 16
pspell_suggest() function, 17–18
“Public” method and properties, 173

Q
Queries (database):

caching results of, 405–407
complex, 406
limiting results of, 390–392

 5 4 6 P H P P r o g r a m m i n g S o l u t i o n s

Queries (database): (Cont.)
multistatement, 399
nested, 398
records affected by, 387
slashes in, 388–390
special characters in, 389

Query() method, 398
Quote() method, 388–389
Quotes:

in databases, 388–390
random, 242–243
on Web pages, 242–243

R
rad2deg() function, 46–47
Radians, 46–47
rand() function:

for numbers, 60–61
for unique identifiers, 59–60

Randomizing:
arrays, 114–115
numbers, 60–61
of numerically indexed arrays, 116
quotes, 242–243
on Web pages, 242–243

Range, number, 36–37
range() function, 36–37
RDBMS (see Relational databases)
RDF Site Summary feeds (see RSS feeds)
readfile() function, 234–235, 278
realpath() function:

for absolute file paths, 229–230
for default search path, 218–219
for file paths, 229–231
for parsing file paths, 231
for relative file paths, 229–230

Reciprocal() method, 68
Records:

changes to, 387
IDs of, 385–387

Recursive functions, 145–146
for arrays, 105
for copying directories, 210–211
for directories, 146
for HTML lists, 243–245
for nested arrays, 245
for printing directory trees, 206–208
for searching directories, 216–218
for searching nested arrays,

118–120
for sorting nested arrays, 125–127
for XML document tree, 414–417

Recursive processing:
of directories, 204–206
for XML, 414–417

RecursiveArrayIterators, 106, 119, 120
RecursiveDirectoryIterator, 206
RecursiveIteratorIterator objects:

in nested arrays, 106
RecursiveDirectoryIterator

and, 206
for searching arrays, 119, 120

Redirection, 279
Reflection, 160–162
ReflectionClass class, 160–162
Re-indexing, 113–114
Relational databases (RDBMS),

382–385, 396
Relative paths, 188, 229–230
Remote files, 188–190, 209–210

copying, 209–210
local copies of, 210
reading, 188–190, 280–281
tracking download of, 250–252
on Web pages, 280–281

Remote hosts:
pinging, 448–449
tracing route of, 449–450

Remote servers, 209–210
Remove() method, 520
RemoveChild() method, 419, 421

 I n d e x 5 4 7

rename() function:
for altering extensions, 221
for renaming, 214

Render() method, 222
Repetition, 7–8
ReplaceChild() method:

for attribute values, 414
for node values, 414
for XML nodes, 419, 421

Replacing:
of characters, with placeholders, 8–9
patterns in files, 219–220
(See also Search and replace)

Require(), 165
Resizing images, 474–475
Restoring sessions, 341–342
Result pages, form, 295–297
Reversing:

of array elements, 109
elements of associative arrays, 116
strings, 6–7

Rewind() method, 104, 204
rmdir() function, 213
RollBack() method, 395, 396
Roman numerals, 48–50
round() function, 38
Rounding, 37–38
rsort() function, 123
RSS (RDF Site Summary) feeds, 432–435

defined, 434
in SimpleXML, 433–435
URLs in, 434
XML and, 432–435

Ruby, shell of, 515
Run() method:

for form pages, 335
for iterations, 507

Run-time configuration, 495–496

S
“Safe” extensions, 319
Save() method:

caching script output, 269–270

for XML data exportation, 430
SaveXML() method:

for creating XML, 419
for XML data exportation, 430

Scalar values, 106
in arrays, 106
in nested arrays, 245
storing, 345

scandir() function:
for processing directories, 203
for recursively processing directories,

205
ScanTableForMenu() method, 264
Schemas (see XML Schemas)
SchemaValidate() method, 427
Script execution times, 264–265
Search and replace, 219–220
Search() method:

for directory file searches, 217
mapping names to IP addresses, 454
performing DNS queries, 452

Search path, default, 218–219
Searching:

Amazon.com, 440–444
arrays, 116–120
directories, 216–218
in directories, 216–218
for files, 216–219
Google, 436–438
keys, 116
with loops, 119–120
matches, 119
multidimensional arrays, 117
nested arrays, 118–120
for patterns in files, 219–220
recursive functions for, 118–120
RecursiveIteratorIterator and,

119, 120
regular expressions in, 220
in strings, 19–20
substrings, 19–20

Search-replace operations, 24
Secondary drop-down lists, 300

 5 4 8 P H P P r o g r a m m i n g S o l u t i o n s

SELECT LAST_INSERT_ID()
command, 385

selectLimit() function, 392
SelectLimit() method, 391
Semaphores, 227, 228
Send() method, 445
Sentences:

“and” for, 108
extracting, from paragraphs, 26–27
joining, 108

Serialized strings, 341–342
Series, unordered, 39
Server classes, 155
Servers:

remote, 209–210
SMTP, 460, 461

Server-side validation, 302
Services_Trackback class (PEAR), 444–446
_sess_close() function, 350
_sess_destroy() function, 350
_sess_gc() function, 350
Session(s), 339–361

authentication system of, 356–360
in cookies, 350
custom handlers for, 346, 351
in databases, 346–351
deleting data of, 340–341
headers for, 363–364
in MySQL, 346–351
passwords for, 356–360
protecting data with, 360–361
protocol restrictions on, 363–364
restoring, 341–342
retrieving data on, 339–340
serializing data from, 341–342
sharing data from, 342–344
shopping carts and, 351–356
starting, 340, 342
storing, in databases, 346–351
storing data from, 339–340
storing objects in, 344–345

session-decode() function, 341, 342
session_destroy() function, 341
session-encode() function, 341, 342
session_set_save_handler() function,

346, 350, 351
session_start() function:

deleting session data, 341
protocol restrictions and, 363
retrieving session data, 339, 340
serializing session data, 342
session storage and, 350, 351
storing session data, 339, 340

_sess_open() function, 350
_sess_read() function, 350
_sess_write() function, 350
Set (Property)() method, 180–181
Set() method:

for creating trackbacks, 445
overloading with, 181

SetAttribute() method, 419
SetBinOptions() method, 58–59
SetCellContents() method, 241–242
setcookie() function:

deleting cookies, 362
protocol restrictions and, 364
retrieving cookies, 361, 362
storing cookies, 361, 362

SetCpu() method, 149
SetData() method, 56–58
set_exception_handler() function:

for custom exception handlers, 486–487
for error displays, 490–492

SetHorizontalMenuTpl() method,
260–261

SetlMenuStructureString()
method, 261

Setlocale(), 512
SetMainOptions() method, 299
SetMemory() method, 149
SetSecOptions() method, 299
SetSublMenuTpl() method, 260–261

 I n d e x 5 4 9

SetTableFields() method, 264
SetTitle() method, 345
SetTXTBody() method, 462, 465
shal1() function, 27
Shared file locks, 198
Shells, interactive, 514–515
Shopping carts, 351–356
shuffle() function, 114–115
Shuffling, of arrays, 114–115
Signatures, hash, 27
similar_text() function, 12
Simple Object Access Protocol (see SOAP)
Simple Queue Service (SQS), 444
SimpleXML:

adding nodes with, 420
attribute values and, 410–414
databases and, 431–432
extensions, 410
for filtering nodes, 424–426
for modifying values, 413–414
namespace and, 424–426
nodes in, 410–414, 419
objects, 411
for parsing XML, 431–432
processing XML in, 416–417
removing nodes with, 420
for retrieving values, 410–413
RSS in, 433–435
XML and, 416–417, 431–432
XPath and, 425–426

SimpleXMLIterator, 416–417
SimpleXMLIterator(), 417
Simplexml_load_string(), 411
Single-string variables, 189
sizeof() function, 21, 107
Slashes, 388–390
Smarty template engine, 266–267
SMTP servers, 460, 461
SOAP (Simple Object Access Protocol):

for Amazon E-Commerce Service,
440–444

for E-Commerce Service, 440–444
for ECS, 440–444

errors with, 437, 440
extensions, 410
for Google Web APIs, 436–438
with Google Web APIs, 436–438
support for, 437

SOAP class (PEAR), 438–439
SOAP_Client, 440–444
SOAPClient objects, 437, 442
Soap_fault() objects:

for E-Commerce service, 444
for Google web APIs, 440

SOAPFault objets, 437
Social security numbers, 312–313
sort() function:

for array sorting, 121–123
for unordered series, 39

Sorting:
arrays, 121–127
associative arrays, 122
custom functions for, 124–125
files, 214–216
with keys, 123–124
multidimensional arrays, 123–124
with natural-language algorithm, 122
nested arrays, 125–127
numerically indexed arrays, 121–122
recursive functions for, 125–127
with SQL, 124
string-indexed arrays, 122

sortRecursive() function, 127
Source codes, 235–236
Space compression, 5–6, 19, 195
Special characters:

boundary lines of, 7
in databases, 388–390

Spell-checking, 15–18
Spiders, Web, 282
SPL (see Iterators)
Splicing arrays, 111
Splitting:

of lists, 108
of strings, 10–11

 5 5 0 P H P P r o g r a m m i n g S o l u t i o n s

sprintf() function:
for minutes to hours conversion, 91
padding numbers and, 43–44

SQL (see Structured Query Language)
SQLite, 374–376

checksums in, 479
counting altered records in, 387
custom exception handlers in, 488
shopping cart, 351–356
SQL commands in, 374–376
support of, 375
for Web page monitoring, 479

sqlite_changes() function:
counting altered records, 387
SQLite and, 375

sqlite_close() function, 375
SQLiteDatabase() objects, 375, 376
sqlite_error_string() function, 375
sqlite_fetch_all() function, 375
Sqlite_fetch_array(), 375
sqlite_fetch_object() function, 375
sqlite_fetch_single() function, 375
sqlite_last_error() function, 375
sqlite_num_rows() function, 375
sqlite_open() function, 375
sqlite_query() function, 375
SQS (Simple Queue Service), 444
Standalone PHP executables, 509–511
Standard PHP Library (SPL) Iterators (see

Iterators)
Start() method, 500
startDrilling() function, 144–145
stat() function, 187–188
Static keywords, 171
Statically-accessible class method, 170–171
Statically-accessible class properties,

170–171
Statically-accessible member classes,

170–171
Statistical values, 55–59
Storage:

of classes, 165
of cookies, 361–362

of objects, 344–345
of scalar values, 345
of session data, 339–340
of sessions, 346–351

String(s), 1–34
alphabetic, 306–307
alphanumeric, 307–308
arrays converted to, 107–108
case controls for, 2–3
checksums, 27
comma-separated lists as, 12–13
comparison of, 11–12
conversion of, 78–80
converting characters in, 9–10
counting matches in, 21
counting words in, 14–15
decomposing, 107–108
delimiter-separated, 108
duplicate words in, 18–19
empty values in, 3–4
encryption of, 28–31
end characters of, 4–5
extracting, 24–25, 112
files and, 188–190
internationalizing, 512
localizing, 511–513
lower-case, 2–3
matches in, 21–24
numerically indexed, 107–108
one-way encryption for, 28–29
parsing, 12–14
passwords, 31–34
patterns in, 21–24
repeating, 7–8
replacing patterns in, 22–24
reversing, 6–7
searching, 19–20
sentence extraction, 26–27
serialized, 341–342
session, 341–342
spell-checking, 15–18
splitting, 10–11
substrings, 24–25, 112

 I n d e x 5 5 1

truncating, 8–9
two-way encryption for, 29–31
as UNIX timestamps, 78–80
upper-case, 2–3
URLs in, 13–14
whitespace in, 5–6
writing to files, 196–197

String-indexed arrays, 122
Strip_tags():

clean ASCII and, 284
for RSS, 435

strlen() function, 9, 194–195
str_repeat() function:

for printing directory trees, 208
for repeating strings, 7–8

str_replace() function, 22–24
strrev() function, 6–7
str_split() function, 10–11
strtok() function, 26–27
strtolower() function, 2–3
strtotime() function, 74

for PHP/MySQL date formats, 91
for strings to timestamps conversion,

78–80
strtoupper() function, 2–3
Structured Query Language (SQL):

caching query results with, 405–407
in Improved MySQL, 370
limiting query results with, 390–392
in Microsoft SQL Server, 379–381
multiple commands, 398–400
multistatement queries in, 399
in MySQLi, 370
in ODBC, 381–382
in Open Database Connectivity,

381–382
in Oracle, 378–379
in PostgreSQL server, 372–373
prepared statements with, 392–395
for retrieving binary data, 404–405
sorting with, 124
in SQLite database, 374–376

for storing binary data, 400–404
in Sybase, 376–378
as transaction, 395–397

str_word_count() function:
for counting file lines, words,

characters, 194–195
preg_split() vs., 15

Sub() method:
for fractions, 68
for working with complex numbers, 71

Submit element (HTML forms), 296–297
Subqueries, 398
Subqueries (nested queries), 398
Subselect, 398
substr() function, 112

for altering file extensions, 221
for encryption/decryption, 31
for end-of-string character

removal, 4–5
with strlen() functions, 9
for truncating strings, 8–9

SubstractSpan() method, 96–97
substr_count() function, 21
Substrings, 24–25, 112

extracting, 24–25, 112
patterns in, 22–24
searching, 19–20

Superglobal variables (superglobals), 136
Suppressing errors, 489–490
Swapping:

in arrays, 108–109
in associative arrays, 108–109
of keys, 108–109
of values, 108–109

Switch() conditional statement, 355
Sybase, 376–378

last inserted record ID for, 386
SQL commands in, 376–378

sybase_close() function, 377
sybase_connect() function, 377
sybase_fetch_array() function,

377–378

 5 5 2 P H P P r o g r a m m i n g S o l u t i o n s

sybase_fetch_assoc() function, 377
sybase_fetch_object() function, 377
sybase_fetch_row() function, 377
Sybase_last_error_message(), 377
sybase_query() function, 377
sybase_result() function, 378
Sybase_select_db(), 377
Syntax highlighting, 235–236
system() function, 223

T
Tag(s):

empty, 421–422
img tag, 338

Tag clouds, 285–289
“Tailing” files, 223–224
TAR archives, 472–474
Task status displays, 247–249
TDD (test-driven development), 515–521
Telephone numbers, 310–312
Templates, 267

footer, 246–247
header, 246–247
HTML, 246–247
text files as, 267
Web pages from, 265–268

tempnam() function:
for system temporary directory,

228–229
for temporary files, 227–228

Temporary directories, 228–229
Temporary files:

creating, 227–228
uploading and, 318

Temporary variables, 103–104
Test assertion method, 518
Test-driven development (TDD), 515–521
TestException() method, 520
testLeapYear() function, 80–81
testPrime() function, 63–64

Text:
URLs, 237–238
wrapping, 236–237

Text files:
as templates, 267
on Web pages, 234–235

Text_CAPTCHA package (PEAR), 337–338
Text_Diff class (PEAR), 222
Text_Password class (PEAR), 31–34

for pronounceable passwords, 31–32
for unpronounceable passwords, 33–34

Throw statement, 484
TIFF files, 476
Time:

conversion of, 90–91
Greenwich Mean Time, 86–87
hours, 90–91
local, 86–87
minutes, 90–91
(See also Date and time; UNIX

timestamps)
time() function:

errors, 498
for formatting timestamps, 77

Time zones:
conversion between, 86–90
Greenwich Mean Time, 86–87
local, 86–87

Timestamps (see UNIX timestamps)
Titles, capitalization for, 3
Tmpfile(), 228
ToCurrency() method, 48
ToFloat() method, 67–68
ToHTML() method, 241–242
ToNumeral() method, 49–50
ToString() method:

Fibonacci numbers and, 65–66
fractions and, 67–68

ToWords() method, 47–48
Traceroute (tracert) command,

449–450

 I n d e x 5 5 3

Tracert (traceroute) command,
449–450

Trackbacks, 444–446
Trailing zeros, 43–44
Transactions, 395–397
TransformToXML() method, 429
Translation files, 511–513
Trigonometric values, 52–54
trim() function:

for empty values, 3–4
generating clean ASCII text from

HTML markup, 285
for whitespace compression, 6

True overloading, 178
TruncateString(), 9
Truncating strings, 8–9
Try-catch() blocks, 482–483

for using Amazon E-Commerce
Service, 442

for using Google web APIs, 437
Two-way decryption, 29–31
Two-way encryption, 29–31

U
ucfirst() function, 3
ucwords() function, 3
Undefined function, 145, 497
Unicode tables, 10
Uniform Resource Locators (URLs):

associative arrays from, 365–366
back-references for, 237
embedded, 237–238
extracting, 281–282
in forms, 316–317
parsing, 13–14
redirecting, 279
in RSS, 434
text, 237–238
trackbacks to, 445–446
validating, 316–317

uniqid() function:
for form-uploading, 322
for unique identifiers, 59–60

Unique identifiers, 59–60
unique_array() function, 112–113
UniqueException() class, 486
Unit tests, 515–521
Universal Resource Identifier (URI), 424
UNIX permission bits, 188
UNIX timestamps:

conversion of, 78–80
formatting, 76–77
MySQL date format conversion to,

91–93
for script execution times, 265
strings as, 78–80
(See also Date and time)

UNIX_TIMESTAMP() function, 91, 93
unlink() function:

for deleting files, 211–212
for temporary files, 228

Unlock() method, 152
Unlocking, 197–200
Unordered series, 39
Unpronounceable passwords, 32–34
Unset() function:

deleting session data, 340
for initialization/deinitialization

commands, 152
re-indexing and, 114

Uploading:
binary files, 402
form-based, 317–325, 403
integrity in, 319
of local files, 403
over FTP, 456–457
support for, 403
temporary files for, 318
on Web, 402, 403

Upload_max_filesize variable, 319
Upload_tmp_dir variable, 319

 5 5 4 P H P P r o g r a m m i n g S o l u t i o n s

Upper-case, 2–3
URI (Universal Resource Identifier), 424
URLs (see Uniform Resource Locators)
usort() function, 124–125

V
Valid(), 104
Valid system drives (Windows), 225
Validate class (PEAR), 309–310, 315
Validate() method:

for form input, 304
for XML, 427

validateAlpha() function, 306
validateAlphaNum() function, 308
validateCCExpDate() function, 309
validateCCNum() function, 309
ValidateFloat(), 305
ValidateInteger(), 305
validateZip() function, 313
Validation:

of alphabetic strings, 306–307
of alphanumeric strings, 307–308
of characters, 3–4
client-side, 302
of credit card numbers, 308–310
of dates, 77–78
of e-mail addresses, 314–316
error stack for, 302
of form data, 3–4
in forms, 295, 300–317
of international telephone numbers,

310–312
JavaScript for, 302
procedure for, 302
server-side, 302
of Social Security Numbers, 312–313
of telephone numbers, 310–312
of URLs, 316–317
VBScript for, 302
XML, 426–427

Value(s):
array, 106, 108–109, 116
associative arrays, 108–109
attribute, 410–414
currency, 42–43
empty, 3–4
future, 54–55
maximum, 39
minimum, 39
multiple, 140
scalar, 106, 345
statistical, 55–59
swapping, in arrays, 108–109
trigonometric, 52–54

Value comparisons, 39
var_dump() function, 102–103
Variable(s):

external, 134–136
in functions, 134–136
global, 135, 143
for instances, 167
local, 135
single-string, 189
temporary, 103–104

Variable function, 144
Variable interpolation, 267
Variable-length arguments, 138–140
Variable-length lists, 138–140
VBScript, 302
Venn diagrams, 129–130
Version checking, 494–495
version_compare() function, 494
Virtual method, 178–179
Visibility, class, 148, 152, 172–173

W
Watch() method, 504
Web applications:

file upload tools, 402
form-based file uploads, 403

 I n d e x 5 5 5

interactive, 225
interactive file browsers, 225
real-time capability of, 223
“tailing” and, 223

Web development, 234
Web pages, 292

from ASCII files, 282–284
automated monitoring of, 477–479
browser detection, 276–278
browser redirection, 279
caching output from, 268–272
cascading menus on, 258–264
“clean” ASCII and, 284–285
download triggering for, 278–279
e-mail address protection on, 238–240
embedded URLs on, 237–238
encryption on, 238–240
extracting URLs from, 281–282
footer templates for, 246–247
generating, 265–268
Google Web API search on, 437
header templates for, 246–247
HTML elements on (see under HTML)
lists on, 243–245
monitoring, 477–479
paginating, 272–275
progress bars on, 247–252, 321–322
random quotes on, 242–243
redirection of, 279
remote files on, 280–281
script execution times, 264–265
source code display for, 235–236
syntax highlighting, 235–236
tag clouds, 285–289
task status displays on, 247–249
from templates, 265–268
text files on, 234–235
trackbacks with, 444–446
tree menus on, 253–258
wrapping text on, 236–237

Web Services Description Language
(WSDL) files, 437

Web spiders, 282
Week(s), 82–85
Week-in-year number, 82–83
While() loops, 104

for directories, 204
for monthly calender, 98–99
with MySQL, 370

While() objects, 258
Whitespace, 5–6, 195
WHOIS queries, 450–451
Wikipedia Web site, 288
WinCacheGrind, 498
Windows OS:

available drives in, 224–225
drive letters, 225
executables, 510–511
file attributes in, 188
flock() in, 199
locking files in, 199
valid system drives, 225
XML support on, 410

Words:
conversion of, 47–48
counting, 194–195
duplicate, 18–19
in e-mail encryptions, 239
files, 194–195
numbers and, 47–48
as patterns, 14–15

wordwrap() function, 236–237
Write() method, 152
WSDL (Web Services Description

Language) files, 437

X
Xdebug extension, 498–500
XLST (see XSL Transformations)

 5 5 6 P H P P r o g r a m m i n g S o l u t i o n s

XML (eXtensible Markup Language),
409–446

adding nodes to, 419–421
for Amazon E-Commerce Service,

440–444
attribute values, 410–414
for collapsing empty tags, 421–422
counting frequency in, 422–424
creating, 417–419
document tree for, 414–417
for E-Commerce Service, 440–444
for ECS, 440–444
exporting data to, 429–432
filtering nodes, 424–426
frequency in, 422–424
in Google Web API, 434–440
modifying values in, 413–414
namespace and, 424–426
node values, 410–414
parsing, 410, 431–432
processing, 414–417
recursive processing for, 414–417
removing nodes from, 419–421
retrieving values in, 410–413
RSS and, 432–435
source tree, 428
support for, 410
trackbacks with, 444–446
transforming, 428–429
validating, 426–427

writing to database, 431–432
XLST stylesheets and, 428–429
XPath and, 425–426

XML Schemas, 410, 426
XML_Parser class, 424
XML_Statistics class (PEAR), 422–424
xmlTraverse() function, 416
XML_Util class (PEAR), 421–422
XPath, 425–426
Xpath() method, 426
XSL (Extensible Style Language), 428
XSL Transformations (XLST):

extensions, 410
stylesheets, 428–429

Y
Years:

days in, 82–84
leap, 80–81
leap years, 80–81
weeks in, 82–83

Z
Zend engine, 494–495
zend_version() function, 494
Zeros, 43–44
ZIP archives, 470–472
ZipArchive class, 471

